Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 141-148 
    ISSN: 0887-624X
    Schlagwort(e): polyacrylic acid ; silicone rubber membrane ; plasma-induced graft polymerization ; homobifunctional membrane ; 1,1-diphenyl-2-picryhydrazyl ; surface modification ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Polyacrylic acid (PAA) was grafted onto the surface of silicone rubber membrane (SR) by plasma-induced graft copolymerization (PIP). Ar-plasma was used to activate the surface of SR. Also, a determination was made of the influences of plasma treatment power, pressure, time, grafted copolymerization reaction time, and monomer concentration on polymerization yield. The surface properties of SR were measured by ATR-FTIR, ESCA, and SIMS. In those analyses, the elemental composition and different carbon bindings on the surface of SR were examined by ESCA with the amount of O1s/C1s being approximately 0.7 at 60 s by Ar-plasma treatment (60 W, 200 mtorr). The peroxide group introduced on SR was measured via 1,1-diphenyl-2-picryhydrazyl (DPPH). The optimum amount of peroxide groups was 6.85 × 10-8 mol/cm2 at 60 s of Ar-plasma treatment. The peroxide group (33D peak) was introduced onto the surface of SR by negative spectra of SIMS analysis after SR treatment by Ar-plasma. An increase was obtained in grafted polymerization yield with a region of 5 to 50% (v/v) of acrylic acid aqueous solution. Both sites of polyacrylic acid were detected after staining by toluidine blue O. That is, a homobifunctional membrane was developed via this surface modification method. © 1996 John Wiley & Sons, Inc.
    Zusätzliches Material: 13 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 54 (1994), S. 1279-1287 
    ISSN: 0021-8995
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Notizen: Graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) as attempted onto the surface of silicone rubber membrane, which was pretreated by Ar-plasma, then exposed in oxygen to introduce a peroxide group. The effect of the amount of HEMA grafted on Arplasma-treated and graft copolymerization was examined for various parameters of power, pressure, time, reaction time, and concentration of HEMA aqueous solution. The surfaces were characterized by ATR-FTIR, ESCA, contact angle, and SEM. PHEMA was indicated by ATR-FTIR and ESCA analysis to be present successfully onto the grafted surface of silicone rubber membrane. The stable wettability, as demonstrated once the PHEMA grafted films, indicated contact with a hydrated environment by the study of contact angle. © 1994 John Wiley & Sons, Inc.
    Zusätzliches Material: 13 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 39 (1998), S. 380-389 
    ISSN: 0021-9304
    Schlagwort(e): plasma induced grafted polymerization ; silicone rubber membrane ; poly(2-methacryloyloxyethyl) (pMPC) ; collagen ; artificial cornea ; polyethylene oxide (PEO) ; epithelium cell ; penetrating keratoplasty ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin , Technik allgemein
    Notizen: Highly biocompatible polymer membrane was developed for an artificial cornea in this surface modification study. Heterobifunctional silicone rubber membranes (hetero-SR) were prepared by grafting different functional polymers on each side of a silicone rubber membrane (SR). A novel type of bifunctional membrane was developed with the upper-side favoring cell attachment and growth, and the lower-side suppressing cell adhesion. The preparation of heterobifunctional membranes, characterization of polymer membrane surface properties such as ATR-FTIR and ESCA and contact angle, and biological analysis (in vitro and in vivo studies) were investigated in this work. Based on the biological analysis, the heterobifunctional membrane displays promising potential for use as an artificial cornea. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 39, 380-389, 1998.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 0021-9304
    Schlagwort(e): phospholipid ; 2-methacryloyloxyethyl phosphorylcholine ; silicone rubber membrane ; plasma induced grafted polymerization ; protein adsorption ; platelet adhesion ; epithelial cells interaction ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin , Technik allgemein
    Notizen: Poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) was grafted onto the surface of a silicon rubber (SR) membrane (pMPC-SR) by plasma induced grafted copolymerization (PIP). Argon plasma was used to activate the SR surfaces. Determination was also made of the influences of grafted copolymerization reaction time, reaction temperature, and monomer concentration on polymerization yield. The surface properties of SR were characterized by ATR-FTIR, ESCA, and SEM. In those analyses the ATR-FTIR spectra indicated that the pMPC grafted onto the SR surface at 1720 and 3300 cm-1. The elemental composition and different carbon bindings on the surface of the SR were examined by ESCA. An increasing P1s/C1s value g was obtained in the grafted polymerization yield with a concentration of 0.05-0.5M of MPC in the isolated ethanol solution. The surface morphologies of pMPC-SR differed more than those of control and Ar plasma treated surfaces. The difference could have been caused by the homogeneous graft polymerization of pMPC onto the SR membrane. In the biological analyses, protein adsorption on pMPC-SR surfaces was reduced. The reduced level increased with an increase in the pMPC grafted amount. The epithelial cell attachment and growth onto these samples were suppressed. The blood compatibility for a series of pMPC-SR surfaces was examined by platelet adhesion. Blood platelet morphologies in contact with the high ratio of pMPC-SR surfaces were maintained, meaning that in this case the release reaction for platelets never occurred. Consequently, the high amount of pMPC-SR surface had excellent blood compatibility, further suggesting that prevention of adhesion, activation of platelets, and adsorption of blood protein could be achieved. © 1998 John Wiley & Sons, Inc. J. Biomed Mater Res, 42, 134-147, 1998.
    Zusätzliches Material: 15 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...