Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 27 (1993), S. 949-960 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 25 (1991), S. 1075-1081 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 27 (1993), S. 1327-1333 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 18 (1998), S. 215-239 
    ISSN: 1572-8986
    Keywords: Plasma ; CH4 ; RF ; FTIR ; decomposition ; sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract A radio-frequency (RF) plasma system was used to convert methane gas. The reactants and final products were analyzed by using an FTIR (Fourier transform infrared spectrometer). The effects of plasma operational parameters, including feeding concentration (C) of CH 4 , operational pressure (P) in the RF plasma reactor, total gas flow rate (Q) and input power wattage (W) for CH 4 decomposition were evaluated. The results showed that the CH 4 decomposition fraction increases with increasing power input, decreasing operational pressure in the RF plasma reactor, decreasing CH 4 feeding concentration, and decreasing total gas flow rate. In addition, mathematical models based on the obtained experimental data were developed and tested by means of sensitivity analysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 20 (2000), S. 469-494 
    ISSN: 1572-8986
    Keywords: dichlorodifluoromethane (CCl2F2) ; plasma system ; radiofrequency ; reaction mechanism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Decomposition of dichlorodifluoromethane (CCl2F2 or CFC-12) in aradiofrequency (RF) plasma system is demonstrated. The CCl2F2decomposition fractions ηCCl 2 F 2 and mole fractionsof detected products in the effluent gas stream of CCl2F2/O2/Ar andCCl2F2/H2/Ar plasma, respectively, have been determined. The experimentalparameters including input power wattage, O2/CCl2F2 or H2/CCl2F2 ratio,operational pressure, and CCl2F2 feeding concentration wereinvestigated. The main carbonaceous product in the CCl2F2/O2/Arplasma system was CO2, while that in the CCl2F2/H2/Ar plasma systemwas CH4 and C2H2. Furthermore, the possible reaction pathways werebuilt-up and elucidated in this study. The results of the experimentsshowed that the highly electronegative chlorine and fluorine wouldeasily separate from the CCl2F2 molecule and combine with the addedreaction gas. This led to the reactions terminated with the CO2,CH4, and C2H2 formation, because of their high bonding strength. Theaddition of hydrogen would form a preferential pathway for the HCland HF formations, which were thermodynamically stable diatomicspecies that would limit the production of CCl3F, CClF3, CF4, andCCl4. In addition, the HCl and HF could be removed by neutral orscrubber method. Hence, a hydrogen-based RF plasma system provideda better alternative to decompose CCl2F2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Chemical Technology AND Biotechnology 66 (1996), S. 382-388 
    ISSN: 0268-2575
    Keywords: radio-frequency ; plasma ; CH2Cl2 ; gas ; decomposition ; reaction ; mechanism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this study, a radio-frequency plasma system was used to decompose a dichloromethane (CH2Cl2) containing gas. Analyses of the reactants and final products were conducted by using Fourier Transform Infrared Spectroscopy. Then, the effects of plasma operation-parameters, including the gas flow rate, the feeding CH2Cl2 concentration, the equivalence ratio φ ( = stoichiometric O2 needed/actual O2 used) and the input power wattage, for CH2Cl2 decomposition and for the fraction of total carbon input converted into CO2 and CO were investigated. Mole fraction profiles for each experimental condition were determined for the reactants (CH2Cl2 and O2) and for CO, CO2, H2O, HCl, CHCl3, CCl4, COCl2, C2HCl3 and C2Cl4. In addition, the possible reaction pathways were built up and discussed.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Chemical Technology AND Biotechnology 73 (1998), S. 432-442 
    ISSN: 0268-2575
    Keywords: radio-frequency (RF) ; plasma ; carbon dioxide ; decomposition ; sensitivity analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Application of radio-frequency (RF) plasma as an alternative technology for the decomposition of carbon dioxide with methane gas is demonstrated. The results of this study revealed that in CO2/CH4/Ar plasma, the best decomposition fraction of carbon dioxide was 60·0%, which occurs around 316°C in the condition designed for 5% feeding concentration of CO2, 5% feeding concentration of CH4, 20 torr operation pressure, 100 sccm total gas flow rate and 90 watts input power wattage. The CH, CH2 and CH3 radicals obtained from the destruction of CH4 could result effectively in high decomposition of CO2 in the plasma reactor. The optimal mathematical models based on the experimental data obtained were also developed and tested by means of sensitivity analysis, which shows that the input power wattage (W) was the most sensitive parameter for the CO2 decomposition. © 1998 Society of Chemical Industry
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...