Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Developmental Dynamics 198 (1993), S. 123-134 
    ISSN: 1058-8388
    Keywords: Articular cartilage ; Tenascin ; Growth plate ; Limb development ; Chondrocytes ; Extracellular matrix ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The roles of tenascin in cartilage development and function remain unclear. Based on the observation that tenascin is particularly abundant at the epiphyseal extremities of developing cartilaginous models of long bones in chick and mouse embryo, we tested the hypothesis that tenascin is involved in articular cartilage development. Immunofluorescence analysis revealed that tenascin was first localized in the cell condensation region of Day 4 chick embryo limb buds, where the cartilaginous models form. With further development, tenascin gene expression became indeed restricted to the articular cap of the models. Tenascin persisted in the articular cartilage of postnatal chickens but appeared to decrease with age. The protein was also abundant in embryonic and adult tracheal cartilage rings which, like articular cartilage, persist throughout postnatal life. Similar patterns of tenascin expression were seen in mouse. Using monoclonal antibodies to avian tenascin variants, we found that the bulk of articular cartilage contained the shortest tenascin variant (Tn190), whereas the largest variant (Tn230) was present in tissues associated or interacting with articular cartilage (ligaments and meniscus). The protein and its mRNA, however, were undetectable in growth plate cartilage undergoing maturation and endochondral ossification. This inverse correlation between chondrocyte maturation and tenascin production was corroborated by the finding that tenascin gene expression decreased markedly during maturation of a secondary ossification center within the articular cap in vivo. Thus, tenascin is intimately associated with the development of articular cartilage and other permanent cartilages whereas absence or reduced amounts of this matrix protein characterize transisent cartilages which undergo maturation and are replaced by bone. © 1993 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...