Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemical reviews 93 (1993), S. 1281-1306 
    ISSN: 1520-6890
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 36 (1971), S. 1539-1544 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Perspectives in drug discovery and design 17 (1999), S. 1-25 
    ISSN: 1573-9023
    Keywords: log P ; octanol ; partition coefficient ; QSAR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract To extend the successful application of Hammett equations, previously used to predict equilibrium and rates of physico-chemical reactions with electronic and steric parameters, to the realm of biology and biochemistry, a parameter that measures hydrophobicity is required. The partition coefficient of a solute between octanol and water, expressed in log terms to put it on the same free-energy basis as the classic Hammett parameters, has been shown to be widely applicable. It is directly involved in passive transport through membranes, in binding to proteins, and in specific binding at active sites in enzymes. Methods of calculating logP(octanol) that reflect the solvation forces involved, can be useful in elucidating unusual solute conformations that may be preferred in a non-polar environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Perspectives in drug discovery and design 18 (2000), S. 19-38 
    ISSN: 1573-9023
    Keywords: hydrogen bonds ; hydrophobic ; sigma and rho parameters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The solvation forces which determine the equilibrium of a solute between water and a non-polar solvent, such as octanol, cannot be assigned on an atom-by-atom basis in the solute structure. The program CLOGP defines the hydrophobic hydrocarbon portions of any structure in such a way that the remaining polar fragments are unambiguously defined and of a manageable size. Early versions required that each polar fragment thus defined be present in a measured solute before it could be used in calculations of log P(oct), but in versions 4.0 or greater, these can be calculated ab initio; i.e. `from scratch'. An equally important step in calculating log P(oct) for solutes with unmeasured fragments is estimating their propensity for electronic, steric, and/or hydrophobic interactions with other polar fragments which may also be present. The combined error of estimation of a new fragment value and its interaction with others appears to be less than ± 0.5.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 2 (1987), S. 130-152 
    ISSN: 0887-3585
    Keywords: amino acid hydophobicity scale ; QSAR ; amino acids ; peptide side chains ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The fragment method of calculation partition coefficients (P) has been extended to include the common amino acids (AAs). The results indicate that polar and charged side chains influence the hydrophobicity of atoms in the side chain in a predictable manner. Feild effects, as evidenced through polar proximity factors and bond factors, need to be considered for accurate estimation of transfer phenomena. The calculated log P and ΔG°′ values of the 20 AAs agree well with the observed values. Pro calculates to be more hydrophilic than the observed log P. Hydrophobicity scales for peptide side chain residues are compared and evaluated in terms of suitability. Calculated π values for nonpolar side chain residures agree well with the observed values; calculated values for uncharged polar side chain residues deviate by about 0.6 log units except for Gln and Cys; and polar side chain residues with charged side chains calculate as too hydorphilic. Reasons for the differences are explored. We also suggest that tightly bound water to polar moieties in amino acids and peptides may be transferred into the octanol phase during partitioning experiments. A quantitative methodology is persented which characterizes the thermodynamic partitioning of groups and individual atoms in amino acids and proteins.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Physical Organic Chemistry 7 (1994), S. 712-716 
    ISSN: 0894-3230
    Keywords: Organic Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The general solvation equation \documentclass{article}\pagestyle{empty}\begin{document}$${\rm logSP} = {\rm c} + {\rm rR}_2 + {\rm s\pi }_2^{\rm H} + {\rm a}\sum {\rm \beta }_2^{\rm H} + {\rm vV}_{\rm X}$$\end{document} was applied to the partition of solutes between water and isobutanol, pentanol, hexanol, octanol, decanol and oleyl alcohol. It is shown that the two main factors that influence partitioning are solute hydrogen-bond basicity Σβ2H and solute volume Vx. The b coefficient becomes steadily more negative along the above series of alcohols, showing that the alcoholic phases, which are all less acidic than water, become less and less acidic as the chain length increases, and the water content of the alcoholic phase decreases. The v coefficient, on the other hand, becomes gradually more positive, indicating that as the chain length increases and the water content decreases, the alcoholic phase becomes more and more hydrophobic. Of great significance is that for all six alcohols, the a coefficient is effectively zero, so that all alcoholic phases have the same basicity as bulk water, no matter what their water content is. It is suggested that, contrary to results of solvatochromic measurements, the alcohols have similar hydrogen-bond basicity to water.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...