Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1611-1619 
    ISSN: 0887-6266
    Keywords: epoxy ; yield criterion ; molecular weight between crosslinks ; von Mises ; failure envelope ; strain rate ; thermal activation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Several yield criteria for glassy polymers are reviewed, and their limitations in predicting the effects of stress state, strain rate, test temperature, and molecular architecture are noted. These criteria are then generalized, so that a working model can be developed for predicting the yield response of glassy networks subjected to a multiaxial state of stress. To form the model, we summarize the phenomenological yield and fracture response of amine cured epoxies. In stress states ranging from uniaxial compression to biaxial tension, the yield response of these glassy networks follows a modified von Mises criterion (τyoct = τyooct - μσm), when tested at a constant temperature and octahedral shear strain rate, \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $end\{document}oct. Furthermore, changes in \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $end\{document}oct and molecular weight between crosslinks, Mc, affect τyooct only, and μ remains unchanged. This was shown to be true for a broad range of Mc (380 to 1790 g/mol). Additional results are included to illustrate the effects of temperature and strain rate on yield response. These results show that the yield behavior of epoxy resins is best described by a thermally activated process, similar to an Eyring type process. Finally, we extend the model to include intrinsic properties of the resin (e.g., Mc, φ, and Tg) and compare the model's predictions with experimental results. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1611-1619, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2751-2760 
    ISSN: 0887-6266
    Keywords: fatigue ; crazes ; polypropylene ; microscopy ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: This article reports initial results of an investigation whose aim is to characterize fatigue damage induced in semicrystalline polymers subjected to uniaxial high cycle fatigue. Herein we report results obtained from fatiguing tensile bars of high molecular weight compression-molded alpha-phase iPP. Samples were fatigued for up to one million cycles at a frequency of 2 Hz. During fatigue, in situ measurements of dynamic mechanical response and energy densities were recorded. Postmortem morphological studies were also conducted using SEM of etched surfaces and TOM. The results show that damage formation occurs in a regularly spaced array of crazes. This damage, its evolution, and energetics are discussed as they relate to the overall fatigue life of the material. A methodology to isolate the energy consumption for the formation of a single craze is given. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2751-2760, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 58 (1995), S. 869-879 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The tensile fatigue behavior of two engineering thermoplastics (polyacetal and nylon6,6) were studied by measuring changes in the dynamic viscoelastic response together with changes in potential energy density, strain energy density, and irreversible work. The results show that both stress softening and hardening can occur in controlled load cyclic conditions. At high stress levels and/or frequencies, both the polyacetal and nylon6,6 show evidence of thermal softening as characterized by changes in their dynamic viscoelastic properties and decrease in storage modulus with corresponding increases in loss modulus and loss tangent. This effect is supported by observed decreases in the overall crystallinity as measured in DSC experiments. At lower stress levels (the mechanically dominated region), all results indicate that, although fatigue crack propagation (FCP) is one of the mechanisms governing the fatigue life, its contribution is minor and crack initiation time constitutes the majority of the fatigue life. Also, during the initiation stage, both materials become less viscoelastic and more elastic. This phenomenon is evidenced by overall reductions in the loss modulus, loss tangent, and irreversible work densities while the storage modulus is maintained. © 1995 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1371-1382 
    ISSN: 0887-6266
    Keywords: epoxy resins ; thermosets ; glass transition ; yield behavior ; fracture toughness ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effects of crosslink functionality (fc), molecular weight between crosslinks (Mc), and chain stiffness display on the thermal and mechanical behavior of epoxy networks are determined. Both fc and Mc are controlled by blending different functionality amines with a difunctional epoxy resin. Chain stiffness is controlled by changing the chemical structure of the various amines. In agreement with rubber elasticity theory, the rubbery moduli are dependent on fc and Mc, but independent of chain stiffness. The glassy moduli and secondary relaxations of these networks are relatively independent of fc, Mc, and chain stiffness. However, the glass transition temperatures (Tg) of these networks are dependent on all three structural variables. This trend is consistent with free volume theory and entropic theories of Tg. fc, Mc, and chain stiffness control the yield strength of these networks in a manner similar to that of Tg and is the result that both properties involve flow or relaxation processes. Fracture toughness, as measured by the critical stress intensity factor (KIc), revealed that fc and Mc are both critical parameters. The fracture behavior is the result of the fracture toughness being controlled by the ability of the network to yield in front of the crack tip. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1371-1382, 1998
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...