Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advances in science and technology Vol. 45 (Oct. 2006), p. 281-284 
    ISSN: 1662-0356
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Natural Sciences in General , Technology
    Notes: Fe- and Eu-doped TiO2 nanocrystals were synthesized via Ar/O2 thermal plasma oxidationof liquid precursor mists. The use of mists ensures atomic level mixing of the elements and highsupersaturation of the evaporated species upon plasma oxidation, which favors nanocrystal formationupon condensation. Iron-doped TiO2 nanopowders with controlled iron to titanium atomic ratios(RFe/Ti) ranging from 0 to 20%, were synthesized by oxidative pyrolysis of liquid-feed metallorganicprecursors containing titanium tetra-n-butoxide (TTBO) and ferrocene. Europium doped TiO2luminescent nanocrystals were also synthesized via RF thermal plasma oxidation of liquid precursormists containing TTBO and europium nitrate
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 41-42 (Apr. 2008), p. 41-48 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Hydroxyapatite (HA) powder was synthesized by a sol-gel method with Ca(OH)2 andH3PO4 as reactants. The HA granules were then coated with TiH2 powder using a mechanicalmixing method. The HA-TiH2 material system produced HA-Ti composites after hot-pressing at1050ºC. The HA-Ti composites are mainly composed of HA and Ti, with small amounts of Ca2P2O7and Ca3(PO4)2 phases. Fracture toughness and bending strength are 2.4 MPa·m1/2 and 54.3 MPa,respectively for the HA-20vol%Ti composite, higher than those of the pure HA ceramic. Theimprovement in properties is because of the unique 3D network structure of Ti, which is an idealreinforcement structure for the weak and brittle HA. According to ISO/TR 7405-1984, hemolysistest was performed to evaluate the blood compatibility of the material. The results show that thehemolysis rate of the HA-20vol%Ti composite is 0.56%. Relative growth rates (RGR) of L-929cells soaked after 6 days in the HA-20vol%Ti group, pure Ti group, black group and pure Pb groupwere 132%, 100%, 90% and 6% respectively, while the level of cytotoxicity was grade 0 in HA-Ticomposite group. These results imply that the HA-20vol%Ti composite has good biocompatibilityand bioactivity
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Hydroxyl-type Sc2O3 precursors have been synthesized via precipitation at 80°C with hexamethylenetetramine as the precipitant. The effects of starting salts (scandium nitrate and sulfate) on powder properties are investigated. Characterizations of the powders are achieved by elemental analysis, X-ray diffractometry (XRD), differential thermal analysis/thermogravimetry (DTA/TG), high-resolution scanning electron microscopy (HRSEM), and Brunauer-Emmett-Teller (BET) analysis. Hard-aggregated precursors (γ-ScOOH·0.6H2O) are formed with scandium nitrate, which convert to Sc2O3 at temperatures ≥400°C, yielding nanocrystalline oxides of low surface area. The use of sulfate leads to a loosely agglomerated basic sulfate powder having an approximate composition of Sc(OH)2.6(SO4)0.2·H2O. The powder transforms to Sc2O3 via dehydroxylization and desulfurization at temperatures up to 1000°C. Well-dispersed Sc2O3 nanopowders (∼64.3 nm) of high purity have been obtained by calcining the basic sulfate at 1000°C for 4 h. The effects of SO42− on powder properties are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: 10mol% Gd2O3-doped CeO2 solid solutions (20GDC) have been synthesized via carbonate coprecipitation using ammonium bicarbonate (AHC) and urea as the precipitants. The precursors and the resultant oxide powders were characterized via chemical analysis, X-ray diffractometry (XRD), Brunauer–Emmett–Teller (BET) analysis, and high-resolution scanning electron microscopy (HRSEM). Sinterabilities of the 20GDC oxides in air were studied by constant-rate-of-heating (CRH) sintering and the conventional ramp-and-holding sintering methods. The precursor processed by both methods is hydroxyl carbonate but shows quite different particle morphologies in the two cases. Highly sinterable 20GDC oxides that can be densified to 〉99% of the theoretical at 1050°C within 4 h have been obtained via the AHC method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Morphologic changes that occurred during firing in undoped and sulfate-ion-doped yttria powders were examined in the present study. Clear scanning electron microscopy (SEM) images of uncoated insulators were achieved and charging of electrons was avoided by observing small samples, throughout which most of the electrons of the incident beam penetrated. SEM observation and firing of the samples were repeated several times. Searching the observed areas or particles started at low magnification, with the aid of photographs taken earlier. The sulfate-ion dopant inhibited volume diffusion and/or grain-boundary diffusion, and then particle growth of the sulfate-ion-doped yttria proceeded by surface diffusion or evaporation–condensation along with pore growth, which resulted in collapse of the agglomerates of primary particles. Although most of the other particles exhibited slight pore growth along with particle growth at temperatures as low as 800°C, a hardening of the agglomerated particles, because of pore elimination by volume diffusion and/or grain-boundary diffusion, occurred at temperatures 〉850°C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two wet-chemical routes have been used to synthesize Sc2O3 nanopowders from nitrate solutions employing ammonia water (AW) and ammonium hydrogen carbonate (AHC) as the precipitants. The precursors and the resultant oxides are characterized by elemental analysis, X-ray diffractometry, differential thermal analysis/thermogravimetry, high-resolution scanning electron microscopy, and Brunauer-Emmett-Teller analysis. Crystalline γ-ScOOH·nH2O (n≈ 0.5) is the only phase obtained by the AW method. This phase dehydrates to Sc2O3 at ∼400°C, yielding hard aggregated nanocrystalline Sc2O3 powders. Three types of precursors have been synthesized by the AHC method, depending on the AHC/Sc3+ molar ratio (R): amorphous basic carbonate [Sc(OH)CO3·H2O] at R≤ 3, crystalline double carbonate [(NH4)Sc(CO3)2·H2O] at R≥ 4, and a mixture of the two phases at 3 〈 R 〈 4. Among these precursors, only the basic carbonate shows spherical particle morphology, ultrafine particle size (∼50 nm), and weak agglomeration. Sc2O3 nanopowders (∼28 nm) with high surface area (∼49 m2/g) have been prepared by calcining the basic carbonate at 700°C for 2 h.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Nanocrystalline CeO2 powders have been successfully synthesized via a carbonate precipitation method, using ammonium carbonate (AC) as the precipitant and cerium nitrate hexahydrate as the cerium source. The AC/Ce3+ molar ratio (R) affects significantly precursor properties, and spherical nanoparticles can be produced only in a narrow range of 2 〈 R≤ 3. The precursor, having an approximate composition of Ce(OH)CO3·2.5H2O, decomposes to CeO2 at temperatures ≥300°C. The CeO2 powder calcined at 700°C exhibits high reactivity and can be densified to 〉99% of theoretical at 1000°C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Praseodymium-doped ceria (CeO2) nanopowders have been synthesized via a simple but effective carbonate-coprecipitation method, using nitrates as the starting salts and ammonium carbonate as the precipitant. The precursors produced in this work are ammonium rare-earth double carbonates, with a general formula of (NH4)0.16Ce1−xPrx(CO3)1.58·H2O (0 〈 x≤ 0.20), which directly yield oxide solid solutions on thermal decomposition at a very low temperature of ∼400°C. Praseodymium doping causes a gradual contraction of the CeO2 lattice, because of the oxidation of Pr3+ to smaller Pr4+, and suppresses crystallite coarsening of the oxides during calcination. Dense ceramics have been fabricated from the thus-prepared nanopowders via pressureless sintering for 4 h at a low temperature of 1200°C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The scavenging of a resistive siliceous phase via the addition of Al2O3 was studied, using imaging secondary-ion mass spectroscopy (SIMS), given the improved grain-boundary conductivity in 8-mol%-yttria-stabilized zirconia (8YSZ). The grain-boundary resistivity in 8YSZ decreased noticeably with the addition of 1 mol% of Al2O3. Strong SiO2 segregation at the grain boundaries was observed in a SIMS map of pure 8YSZ that contained 120 ppm of SiO2 (by weight). The addition of 1 mol% of Al2O3 caused the SiO2 to gather around the Al2O3 particles. The present observations provided direct and visual evidence of SiO2 segregation at the grain boundaries (which had a deleterious effect on grain-boundary conductivity) and the scavenging of SiO2 via Al2O3 addition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A carbonate precursor of yttrium aluminum garnet (YAG) with an approximate composition of NH4AlY0.6(CO3)1.9(OH)2·0.9H2O was synthesized via a coprecipitation method from a mixed solution of ammonium aluminum sulfate and yttrium nitrate, using ammonium hydrogen carbonate as the precipitant. The precursor precipitate was characterized using chemical analysis, differential thermal analysis/thermogravimetry, X-ray diffractometry, and scanning electron microscopy. The sinterability of the YAG powders was evaluated by sintering at a constant rate of heating in air and vacuum sintering. The results showed that the precursor completely transforms to YAG at ∼1000°C via the formation of a yttrium aluminate perovskite (YAP) phase. YAG powders obtained by calcining the precursor at temperatures of ≤1200°C were highly sinterable and could be densified to transparency under vacuum at 1700°C in 1 h without additives.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...