Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 152 (1996), S. 169-181 
    ISSN: 1432-1424
    Keywords: Key words: K+ uptake system — Genetic complementation — Transport kinetics — Patch-clamp analysis — Ion-selectivity —Schizosaccharomyces pombe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Complementary DNAs involved in potassium transport in Schizosaccharomyces pombe were selected by complementation of defective K+ uptake in a trk1 trk2 mutant of Saccharomyces cerevisiae. Here we describe the SpTRK gene that encodes a protein of 833 amino acids. The predicted structure contains 12 putative membrane-spanning domains and resembles various high- and low-affinity systems for K+ transport in yeasts and plants. TKHp, the product of SpTRK exhibits high homology to TRK1 and TRK2 of Saccharomyces cerevisiae as well as to HKT1 of Triticum aestivum, but is not related to HAK1 of another ascomycete, Schwanniomyces occidentalis, suggesting that different routes for potassium uptake evolved independently. This protein is a potassium-specific transporter since functional analysis of the SpTRK complemented mutant strain of Sacch. cerevisiae revealed potassium transport affinities and uptake characteristics similar to those obtained in wild-type Sch. pombe. Patch-clamp analysis in the whole-cell mode confirmed the TKHp-mediated inward current in the complemented strain. The inward current increased by acidification of the extracellular medium thereby suggesting a mechanism of K+H+ cotransport. The inward current is not detectable when external K+ is substituted by Na+, documenting a distinct cation specificity of the protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 13 (1997), S. 215-224 
    ISSN: 0749-503X
    Keywords: glucose transporter gene ; heterologous expression ; substrate accumulation ; transport energization ; Schizosaccharomyces pombe ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Genomic DNA of the Schizosaccharomyces pombe glucose transporter, GHT1, was obtained by complementation of the glucose transport deficient Sz. pombe strain YGS-5. Here we describe the GHT1 gene that encodes a protein of 565 amino acids with a corresponding molecular mass of 62·5 kDa. This eukaryotic glucose transporter contains 12 putative transmembrane segments and is homologous to the HXT multigene family of S. cerevisiae with several amino acid motifs of this sugar transporter family. It is also homologous to other sugar carriers from human, mouse and Escherichia coli. The function of the Ght1 protein as a glucose transporter was proved both by homologous and heterologous expression in the Sz. pombe mutant YGS-5 and in the S. cerevisiae hxt mutant RE700A, respectively. Both transformed yeast strains transported d-glucose with substrate specificity similar to that in Sz. pombe wild-type cells. Moreover, the cells of the two transformed yeast strains accumulated 2-deoxy-d-glucose, a non-metabolizable d-glucose analogue, with an efficiency similar to Sz. pombe wild-type cells. The ability of the S. cerevisiae mutant RE700A to accumulate 2DG in an ΔμH+dependent manner after transformation with GHT1 provides evidence that the Sz. pombe transporter catalyses an energy-dependent uptake of glucose. The sequence of GHT1 was deposited at EMBL, Outstation EBI, Accession Number X91218. ©1997 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...