Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Methanosarcina barkeri ; Methanogenesis ; Tetrahydromethanopterin ; Coenzyme F420 ; Affinity chromatography ; Blue Sepharose CL-6B
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The dehydrogenation of N 5,N 10-methylenetetrahydromethanopterin (CH2=H4MPT) to N 5,N 10-methenyltetrahydromethanopterin (CH≡H4MPT+) is an intermediate step in the oxidation of methanol to CO2 in Methanosarcina barkeri. The reaction is catalyzed by CH2=H4MPT dehydrogenase, which was found to be specific for coenzyme F420 as electron acceptor; neither NAD, NADP nor viologen dyes could substitute for the 5-deazaflavin. The dehydrogenase was anaerobically purified almost 90-fold to apparent homogeneity in a 32% yield by anion exchange chromatography on DEAE Sepharose and Mono Q HR, and by affinity chromatography on Blue Sepharose. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band with an apparent mass of 31 kDa. The apparent molecular mass of the native enzyme determined by polyacrylamide gradient gel electrophoresis was 240 kDa. The ultraviolet/visible spectrum of the purified enzyme was almost identical to that of albumin suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentrations were linear: the apparent K m for CH2=H4MPT and for coenzyme F420 were found to be 6 μM and 25 μM, respectively. Vmax was 4,000 μmol min-1·mg-1 protein (kcat=2,066 s-1) at pH 6 (the pH optimum) and 37°C. The Arrhenius activation energy was 40 kJ/mol. The N-terminal amino acid sequence was found to be 50% identical with that of the F420-dependent CH2=H4MPT dehydrogenase isolated from H2/CO2 grown Methanobacterium thermoautotrophicum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Sulfate-reducing archaebacteria ; Hyperthermophilic bacteria ; Archaeglobus fulgidus ; Tetrahydromethanopterin ; Methanofuran ; Coenzyme F420 ; Thermostable enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methylene-H4MPT reductase was found to be present in Archaeoglobus fulgidus in a specific activity of 1 U/mg. The reductase was purified 410-fold. The native enzyme showed an apparent molecular mass of approximately 200 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only 1 polypeptide of apparent molecular mass 35 kDa. The ultraviolet/visible spectrum of the reductase was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was dependent on reduced coenzyme F420 as electron donor. Neither NADH, NADPH, nor reduced viologen dyes could substitute for the reduced deazaflavin. From reciprocal plots, which showed an intersecting patter, a K m for methylene-H4MPT of 16 μM, a K m for F420H2 of 4 μM, and a V max of 450 U/mg (Kcat=265 s-1) were obtained. The enzyme was found to be rapidly inactivated when incubated at 80°C in 100 mM Tris/HCl pH 7. The rate of inactivation, however, decreased to essentially zero in the presence of either F420 (0.2 mM), methylene-H4MPT (0.2 mM), albumin (1 mg/ml), or KCl (0.5 M). The N-terminal amino acid sequence was determined and found to be similar to that of methylene-H4MPT reductase (F420-dependent) from the methanogens Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Methanopyrus kandleri. The purification and some properties of formylmethanofuran dehydrogenase from A. fulgidus are also described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Archaea ; Methanogenic bacteria ; Hyperthermophiles ; Sulfate reducers ; Methanobacterium thermoautotrophicum ; Methanosarcina barkeri ; Tetrahydromethanopterin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Archaeoglobus fulgidus and Methanopyrus kandleri are both extremely thermophilic Archaea with a growth temperature optimum at 83°C and 98°C, respectively. Both Archaea contain an active N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase. The enzyme from M. kandleri has recently been characterized. We describe here the purification and properties of the enzyme from A. fulgidus. The cyclohydrolase from A. fulgidus was purified 180-fold to apparent homogeneity and its properties were compared with those recently published for the cyclohydrolase from M. kandleri. The two cytoplasmic enzymes were found to have very similar molecular and catalytic properties. They differed, however, significantly with respect of the effect of K2HPO4 and of other salts on the activity and the stability. The cyclohydrolase from A. fulgidus required relatively high concentrations of K2HPO4 (1 M) for optimal thermostability at 90°C but did not require salts for activity. Vice versa, the enzyme from M. kandleri was dependent on high K2HPO4 concentrations (1.5 M) for optimal activity but not for thermostability. Thus the activity and structural stability of the two thermophilic enzymes depend in a completely different way on the concentration of inorganic salts. The molecular basis for these differences are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 136 (1983), S. 111-113 
    ISSN: 1432-072X
    Keywords: Isoleucine biosynthesis ; Citramalate ; Methanogenic bacteria ; Methanobacterium thermoautotrophicum ; Threonine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanobacterium thermoautotrophicum was grown on H2 and CO2 in a medium supplemented with [U-14C]threonine. Surprisingly, only threonine and not isoleucine in the cell protein became labelled indicating that the usual pathway of isoleucine biosynthesis via threonine is not operative in this anaerobic archaebacterium. Labelling studies with [1-14C]pyruvate, [2-14C]pyruvate and [1,4-14C]-succinate succinate revealed that isoleucine is probably synthesized from pyruvate and acetyl-CoA via citramalate as an intermediate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Methanogenic bacteria ; Methanopyrus ; Hyperthermophiles ; Thermostability ; Tetrahydromethanopterin ; Coenzyme F420
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogens known so far. N 5 N 10 -Methylenetetrahydromethanopterin reductase, an enzyme involved in methanogenesis from CO2, was purified from this hyperthermophile. The apparent molecular mass of the native enzyme was found to be 300 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only one polypeptide of apparent molecular mass 38 kDa. The ultraviolet/visible spectrum of the enzyme was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was specific for reduced coenzyme F420 as electron donor; NADH, NADPH or reduced dyes could not substitute for the 5-deazaflavin. The catalytic mechanism was found to be of the ternary complex type as deduced from initial velocity plots. V max at 65°C and pH 6.8 was 435 U/mg (kcat=275 s-1) and the K m for methylenetetrahydro-methanopterin and for reduced F420 were 6 μM and 4 μM, respectively. From Arrhenius plots an activation energy of 34 kJ/mol was determined. The Q 10 between 40°C and 90°C was 1.5. The reductase activity was found to be stimulated over 100-fold by sulfate and by phosphate. Maximal stimulation (100-fold) was observed at a sulfate concentration of 2.2 M and at a phosphate concentration of 2.5 M. Sodium-, potassium-, and ammonium salts of these anions were equally effective. Chloride, however, could not substitute for sulfate or phosphate in stimulating the enzyme activity. The thermostability of the reductase was found to be very low in the absence of salts. In their presence, however, the reductase was highly thermostable. Salt concentrations between 0.1 M and 1.5 M were required for maximal stability. Potassium salts proved more effective than ammonium salts, and the latter more effective than sodium salts in stabilizing the enzyme activity. The anion was of less importance. The N-terminal amino acid sequence of the reductase from M. kandleri was determined and compared with that of the enzyme from Methanobacterium thermoautotrophicum and Methanosarcina barkeri. Significant similarity was found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Thermophiles ; Methanopyrus ; Methanogenic bacteria ; Archaebacteria ; Pterins ; Tetrahy-dromethanopterin ; Methylenetetrahydromethanopterin ; Coenzyme F420 ; Hydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanopyrus kandleri is a novel abyssal methanogenic archaebacterium growing at 110°C on H2 and CO2. The N5, N10-methylenetetrahydromethanopterin dehydrogenase, an enzyme involved in methanogenesis from CO2 and H2, was purified from this hyperthermophile and characterized. The dehydrogenase was found to be composed of only one polypeptide of apparent molecular mass 44 kDa. The UV/Vis spectrum was similar to that of albumin. The protein catalyzed the reversible dehydrogenation of N5, N10-methylenetetra-hydromethanopterin (CH2=H4MPT) to N5, N10-methenyltetrahydromethanopterin (CH = H4MPT4) and molecular hydrogen: CH = H4MPT4 + H2. The rate of CH2=H4MPT dehydrogenation (apparent Vmax) at 65°C and pH5.8 was 1500 U/mg, the apparent Km for CH2=H4MPT was 50 μM, the Arrhenius activation energy was 52 kJ/mol, and the Q10 between 30°C and 70°C was 2.-. The specific activity increased hyperbolically with the proton concentration between pH 7 and pH 4.5. The purified dehydrogenase did not catalyze the reduction of viologen dyes, of coenzyme F420, and of pyridine nucleotides with either CH2=H4MPT or H2. For activity the CH2=H4MPT dehydrogenase required the presence of salts. Fifty percent of maximal activity was reached at salt concentrations of 100 mM, potassium phosphate, potassium chloride, and sodium chloride being almost equally effective in stimulating the enzyme activity. Cell extracts of M. kandleri did not loose CH2=H4MPT dehydrogenase activity when incubated at 90°C for 60 min. The purified enzyme, however, proved very themolabile. The N-terminal amino acid sequence of the dehydrogenase was determined and compared with that of the CH2=H4MPT dehydrogenase (H2-forming) from Methanobacterium thermoautotrophicum. Significant similarity was found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: methanogenic archaebacteria ; Methanopyrus ; Hyperthermophiles ; Methyl-coenzyme M reductase ; Coenzyme F430 ; Coenzyme F420 ; Methanofuran ; Tetrahydromethanopterin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogen known so far. Methyl-coenzyme M reductase, the enzyme catalyzing the methane forming step in the energy metabolism of methanogens, was purified from this hyperthermophile. The yellow protein with an absorption maximum at 425 nm was found to be similar to the methyl-coenzyme M reductase from other methanogenic bacteria in that it was composed each of two α-, β- and γ-subunits and that it contained the nickel porphinoid coenzyme F430 as prosthetic group. The purified reductase was inactive. The N-terminal amino acid sequence of the γ-subunit was determined. A comparison with the N-terminal sequences of the γ-subunit of methyl-coenzyme M reductases from other methanogenic bacteria revealed a high degree of similarity. Besides methyl-coenzyme M reductase cell extracts of M. kandleri were shown to contain the following enzyme activities involved in methanogenesis from CO2 (apparent Vmax at 65°C): formylmethanofuran dehydrogenase, 0.3 U/mg protein; formyl-methanofuran: tetrahydromethanopterin formyltransferase, 13 U/mg; N 5,N10-methenyltetrahydromethanopterin cyclohydrolase, 14 U/mg; N 5,N10-methylenetetrahydromethanopterin dehydrogenase (H2-forming), 33 U/mg; N 5,N10-methylenetetrahydromethanopterin reductase (coenzyme F420 dependent), 4 U/mg; heterodisulfide reductase, 2 U/mg; coenzyme F420-reducing hydrogenase, 0.01 U/mg; and methylviologen-reducing hydrogenase, 2.5 U/mg. Apparent Km values for these enzymes and the effect of salts on their activities were determined. The coenzyme F420 present in M. kandleri was identified as coenzyme F420-2 with 2 γ-glutamyl residues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0008-6215
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0008-6215
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0008-6215
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...