Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 47 (1996), S. 0 
    ISSN: 1365-2389
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: The composition of soil solutions obtained from the field varies with the method of extraction. Variations in sampling methods and the difficulties in extracting representative samples from soils in space and time, can explain divergent results. In this study we compared soil solutions from a forest soil in northern Sweden obtained by a centrifuge drainage technique and by zero-tension monolith lysimeters. Zero-tension lysimeters were destructively sampled, and centrifuge solutions from this soil were compared with that from soil outside. In our study we found three major differences in the solute composition between the centrifugate and the lysimeter leachate: (i) larger concentrations of most solutes in the mor layer centrifugate than in the mor layer leachate, (ii) accumulation of nitrate in the lysimeters, and (iii) larger concentrations of base cations in the zero-tension lysimeters below 0.3 m depth. Water contents within the lysimeters were up to 3.5 times greater than under natural conditions and the water yields from the lysimeters indicate that water residence time ranged from 〈 1 to 〉5 years. This study shows that differences in results from the two methods are due to inherent differences in the methods themselves and not just to the collection of different soil waters. The hydrological anomaly and disturbance induced by the zero-tension lysimeters affects the solute chemistry and thus the applicability of the results to field conditions.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 51 (2000), S. 0 
    ISSN: 1365-2389
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Leaves lying on the forest floor are a major source of dissolved organic substances in soil and surface waters, and these substances have important effects in those environments. We used zero-tension lysimeters to study the chemical characteristics of water percolating through litter from various species of forest trees. The leaching rates were greatest in the autumn and declined rapidly thereafter, especially for deciduous litter. During an annual cycle, 2.5–17% of the initial contents of the carbon in the litter was recovered as dissolved organic carbon in percolates. Humus-like substances, hydrophilic acids and hydrophilic neutral compounds constituted the major fractions of dissolved C. Leachates from deciduous leaf litter were only partly biodegradable, and those from spruce needles were scarcely biodegradable.Low molecular weight organic acids constituted 0–12% of the dissolved organic carbon in the percolates of the first autumn sampling and decreased over time. Acetic and formic acids were present at the largest concentrations, up to 30 μmol l−1 per g litter, and gluconic, pyruvic, fumaric, oxalic and citric acids were also frequent in significant concentrations. Among the aromatic acids, p-hydroxybenzoic acid was identified in four out of five autumn samples. The organic components in litter leachates are important for the microbial activity in soil and surface waters. The organic acids enhance weathering and translocation of metals by their ability to form complexes. Litter is also a source of inorganic ions in soil solutions. The dominant cations in the percolates were K+, Ca2+ and Mg2+, and spruce litter also yielded large quantities of Al and Fe.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 52 (2001), S. 0 
    ISSN: 1365-2389
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor samples were analysed for exchangeable cations and forest floor solutions for cations, anions, simple organic acids and acidic properties. Citric and lactic acid were the most common of the acids under all species. Malonic acid was found mainly under Tsuga canadensis (hemlock) and Fagus grandifolia (beech). The organic acids were positively correlated with dissolved organic carbon and contributed significantly to the organic acidity of the solution (up to 26%). Forest floor solutions under Tsuga canadensis contained the most dissolved C and the most weak acidity among the six tree species. Under Tsuga canadensis we also found significant amounts of strong acidity caused by deposition of sulphuric acid from the atmosphere and by strong organic acids. Base cation exchange was the most important mechanism by which acidity was neutralized. Organic acids in solution from Tsuga canadensis, Fagus grandifolia, Acer rubrum (red maple) and Quercus rubra (red oak) were hardly neutralized while much more organic acidity was neutralized for Acer saccharum (sugar maple) and Fraxinus americana (white ash). We conclude that quantity, nature and degree of neutralization of organic acids differ among the different tree species. While the potential for base cation leaching with organic acids from the forest floor is greatest under Tsuga canadensis, actual leaching with organic anions is greatest under Acer saccharum and Fraxinus americana under which the forest floor contains more exchangeable cations than does the strongly acidified forest floor under Tsuga canadensis.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...