Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 763 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In the present study, extracellular levels of the neuropeptide cholecystokinin (CCK), of the monoamine dopamine and its metabolites 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and of the excitatory amino acids glutamate and aspartate were simultaneously monitored by microdialysis in the neostriatum of halothane-anesthetized rats under basal and K+-depolarizing conditions. Extracellular CCK and dopamine levels, but not glutamate and aspartate levels, were decreased by perfusion with a Ca2+-free medium, under both basal and K+-depolarizing conditions. HPLC revealed that the majority of the CCK-like immunoreactivity in the perfusates coeluted with CCK octapeptide. Striatal extracellular CCK levels were decreased by decortication plus callosotomy, with a parallel decrease in glutamate levels. Striatal extracellular levels of dopamine, DOPAC., and HVA were significantly decreased in animals treated previously with a unilateral 6-hydroxydopamine injection into the medial forebrain bundle. In these animals, however, the effect of decortication plus callosotomy on CCK and glutamate levels was not further augmented. Thus, this study supports the hypothesis of a neuronal origin of extracellular CCK and dopamine monitored with microdialysis in the striatum of the rat, and also supports the idea of a partly contralateral origin of corticostriatal CCK and glutamate inputs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Several putative neurotransmitters and metabolites were monitored simultaneously in the extracellular space of neostriatum, substantia nigra, and cortex and in subcutaneous tissue of the rat by in vivo microdialysis. Glutamate (Glu) and aspartate (Asp) were at submicromolar and γ-aminobutyric acid (GABA) was at nanomolar concentrations in all brain regions. The highest concentration of dopamine (DA) was in the neostriatum. Dynorphin B (Dyn B) was in the picomolar range in all brain regions. Although no GABA, DA, or Dyn B could be detected in subcutaneous tissue, Glu and Asp levels were ≈5 and ≈0.4 µM, respectively. Lactate and pyruvate concentrations were ≈200 and ≈10 µM in all regions. The following criteria were applied to ascertain the neuronal origin of substances quantified by microdialysis: sensitivity to (a) K+ depolarization, (b) Na+ channel blockade, (c) removal of extracellular Ca2+, and (d) depletion of presynaptic vesicles by local administration of α-latrotoxin. DA, Dyn B, and GABA largely satisfied all these criteria. In contrast, Glu and Asp levels were not greatly affected by K+ depolarization and were increased by perfusing with tetrodotoxin or with Ca2+-free medium, arguing against a neuronal origin. However, Glu and Asp, as well as DA and GABA, levels were decreased under both basal and K+-depolarizing conditions by α-latrotoxin. Because the effect of K+ depolarization on Glu and Asp could be masked by reuptake into nerve terminals and glial cells, the reuptake blocker dihydrokainic acid (DHKA) or l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was included in the microdialysis perfusion medium. The effect of K+ depolarization on Glu and Asp levels was increased by DHKA, but GABA levels were also affected. In contrast, PDC increased only Glu levels. It is concluded that there is a pool of releasable Glu and Asp in the rat brain. However, extracellular levels of amino acids monitored by in vivo microdialysis reflect the balance between neuronal release and reuptake into surrounding nerve terminals and glial elements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1438-2199
    Keywords: Amino acids ; Glutamate ; Aspartate ; Dopamine ; Cholecystokinin ; Microdialysis ; Basal Ganglia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Extracellular levels of cholecystokinin (CCK), dopamine (DA), glutamate (Glu) and aspartate (Asp) were simultaneously monitored in the frontoparietal cortex and the striatum of halothane-anaesthetized rats using in vivo microdialysis. Under basal conditions, cortical and striatal CCK levels were 3.11 ± 0.39 pM and 2.76 ± 0.15 pM, respectively. Local KCl (10−1 M) and bicuculline (10−4 M) co-application in cortex or striatum increased the CCK levels 18-fold and 26-fold, respectively. The DA level in striatum was 3.78 ± 0.28 nM and the local perfusion with KCl + bicuculline led to a 45-fold increase. The cortical and striatal outputs of Glu were of the order of 2 · 10−6 M and Asp levels were around 6 · 10−7 M. Local stimulation with KCl (10−1 M) and bicuculline (10−4 M) caused a small increase (2 fold) in cortical and striatal levels of Glu and Asp. The addition of KCl (10−1 M) and bicuculline (10−4 M) to the cortical perfusion medium did not modify CCK, DA or Glu concentrations in striatum. These results demonstrate that CCK, DA, Glu and Asp may be simultaneously monitored in vivo and support the idea that their extracellular levels recovered in the microdialysis perfusates could be derived from neuronal pools.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1438-2199
    Keywords: Amino acids ; Dopamine ; Acetylcholine ; Glutamate ; Aspartate ; Gamma-aminobutyric acid (GABA) ; Striatum ; Microdialysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The neuronal origin of extracellular levels of dopamine (DA), acetylcholine (ACh), glutamate (Glu), aspartate (Asp) and gamma-aminobutyric acid (GABA) simultaneously collected from the neostriatum of halothane anaesthetized rats with in vivo microdialysis was studied. The following criteria were applied (1) sensitivity to K+-depolarization; (2) sensitivity to inhibition of synaptic inactivation mechanisms; (3) sensitivity to extracellular Ca2+; (4) neuroanatomical regionality; sensitivity to selective lesions and (5) sensitivity to chemical stimulation of the characterized pathways. It was found that: (1) Extracellular DA levels found in perfusates collected from the neostriatum fulfills all the above criteria and therefore the changes in extracellular DA levels measured with microdialysis reflect actual release from functionally active nerve terminals, and so reflect ongoing synaptic transmission. (2) Changes in neostriatal ACh levels reflect neuronal activity, provided that a ACh-esterase inhibitor is present in the perfusion medium. (3) Extracellular Glu, Asp and GABA could be measured in different perfusion media in the rat neostriatum and probably reflect metabolic as well as synaptic release. However, (4) the majority of the extracellular GABA levels found in perfusates collected from the neostriatum may reflect neuronal release, since GABA levels were increased, in a Ca2+-dependent manner, by K+-depolarization, and could be selectively decreased by an intrinsic neostriatal lesion. (5) It was not possible to clearly distinguish between the neuronal and the metabolic pools of Glu and Asp, since neostriatal Glu and Asp levels were only slightly increased by K+-depolarization, and no changes were seen after decortication. A blocker of Glu re-uptake, DHKA, had to be included in the perfusion medium in order to monitor the effect of K+-depolarization on Glu and Asp levels. Under this condition, it was found (6) that neostriatal Glu and Asp levels were significantly increased by K+-depolarization, although only increases in the Glu levels were sensitive to Ca2+ in the perfusion medium, suggesting that Glu but not Asp is released from vesicular pools. (7) Evidence is provided that selective stimulations of nigral DA cell bodies may lead to changes in release patterns from DA terminals in the ipsilateral neostriatum, which are in turn followed by discrete changes in extracellular levels of GABA and Glu in the same region. Finally, some methodological considerations are presented to clarify the contribution of neuronal release to extracellular levels of amino acid neurotransmitters in the rat neostriatum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1438-2199
    Keywords: Basal ganglia ; Excitatory amino acids ; Monoamines ; Neuropeptides ; Microdialysis ; Immunocytochemistry ; Parkinson's disease ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary There is immunohistochemical evidence suggesting that glutamate (Glu) is released from nerve terminals and acts, via several receptor subtypes, as a major excitatory neurotransmitter in the cortico-striatal pathway of the rat. Aspartate (Asp) is also present in cortico-striatal neurons, but its role as a neurotransmitter has been questioned, since, in contrast to Glu, it has not been demonstrated in presynaptic vesicles. Glu and Asp can be found at subμM concentrations in the extracellular compartment of most areas of the basal ganglia. Their concentrations are largely regulated by transport mechanisms, but also by a synaptotagmin-dependent exocytotic release, and are sufficiently high to occupy junctional and extrajunctional receptors. We have investigated whether Glu and Asp release in the neostriatum can be selectively modulated by different neuronal systems. Dopamine (DA) and cholecystokinin (CCK) selectively stimulate Asp release, via D1 and CCKB receptor subtypes, respectively. Also opioid κ-agonists increase Asp release. We propose that the selective modulation of Asp release by D1−, CCKB- and κ agonists involves striatal neurons containing Asp, but not Glu. In contrast, local perfusion with the ,μ-opioid antagonist D-Phe-Cys-Tyr-D-Trp-Orn-ThrPen-Thr-NH2 (CTOP) increases both Glu and Asp release. This effect is probably exerted on cortico-striatal terminals, via presynaptic inhibitory μ-receptors. Thus, these results demonstrate that extracellular levels of Glu and Asp are modulated differentially by different neuronal systems, and suggest that in the neostriatum of the rat there are neuronal populations using Glu and/or Asp as messenger(s).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neural transmission 70 (1987), S. 377-381 
    ISSN: 1435-1463
    Keywords: α 2-Adrenoceptors ; human brain ; suicide ; depression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The density of brainα 2-adrenoceptors, quantitated by means of the binding of the agonist [3H]clonidine, was studied in post-mortem cortical membranes of matched control subjects and depressed suicide victims. In the depressed suicide group, the specific high affinity binding of [3H]clonidine was found to be significantly increased (Bmax, 72% greater; p〈0.01) without significant changes in the KD value for the radioligand. These preliminary results indicate thatα 2-adrenoceptor density in the high affinity stateα 2H) is increased in the brain of depressed patients and add strong support to the hypothesis that endogenous depression is related to supersensitiveα 2-adrenoceptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...