Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 24 (1974), S. 109-119 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrogen fixation in the euphotic zone of the ocean was measured by C2H2 reduction and 15N2 incorporation associated with Trichodesmium sp. and also with Richelia intracellularis occurring within the cells of Rhizosolenia styliformis var. longispina, and R. cylindrus. The vertical distribution of N2 fixation activity, N2-fixing species, particulate matter and dissolved nutrients was measured. The effects of light intensity, sample concentration, length of incubation, and nutrient enrichment on the rates of C2H2 reduction were determined. Estimates of the importance of N2 fixation in adding previously uncycled nitrogen to the euphotic zone are given.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The magnitude and physiological characteristics of biological nitrogen fixation have been studied in the oligotrophic waters of the North pacific gyre. The filamentous blue-green algae Trichodesmium spp. and Richelia intracellularis were the important nitrogen-fixing phytoplankton. Most of the nitrogen fixation occurs in the upper 40 m of the water column, with detectable fixation as deep as 90 m, which corresponds to about the 1 % light depth. There was no evidence of photoinhibition of nitrogen fixation, although CO2 reduction was depressed slightly at the highest light levels. The rate of nitrogen fixation in the water column varied throughout the day, being highest in mid-morning and in late afternoon. Relatively high fixation rates were also found during periods of darkness. Elevated oxygen concentrations had a marked inhibitory effect on rates of nitrogen fixation, a pO2 of 0.4 atm causing a 75% inhibition. Data from studies of nitrogen fixation and assimilation rates of 15N-labelled nitrate, ammonium, and urea indicate that nitrogen fixation furnished about 3% of the total daily fixed nitrogen requirement for phytoplankton growth. Studies with isolated colonies of Trichodesmium spp. indicated that 100% of their nitrogen requirement was met by nitrogen fixation. Chemical composition of the Trichodesmium colonies showed that the C:N ratio was 4.1 and that their phosphorus content relative to carbon or nitrogen was much lower than that of the total particulate material in the water column. Elevated ratios of carbon: adenosine triphosphate (ATP) also suggest that phosphorus deficiency may be limiting the growth of Trichodesmium. The magnitude of nitrogen fixation in the gyre is seasonally dependent, with high rates in late summer and autumn. At these times the water column is stratified, with phosphate and nitrate barely detectable in the upper 100 m. Our data suggest that during these months of stratification, biological fixation of nitrogen amounts to about 33 μg-at N/m2/day.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...