Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 7353-7361 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High electric fields, that are characteristic of sub-micron devices, produce highly energetic electrons, lack of equilibrium between electrons, optical phonons, and acoustic phonons, and high rates of heat generation. A simple coupled thermal and electrical model is developed for sub-micron silicon semiconductor devices consisting of the hydrodynamic equations for electron transport and energy conservation equations for different phonon modes. An electron Reynolds number is proposed and used to simplify the electron momentum equation. On a case study of the metal-oxide-semiconductor field-effect transistor with 0.24 μm gate length, the calculated transconductance of 0.175 1/Ω m agreed well with measured value of 0.180 1/Ω m at 2 V drain voltage. The maximum electron temperature is found to occur under the drain side of the gate where the electric field is the highest. Comparison with experimental data shows the predictions of optical and acoustic phonon temperature distributions to have the correct trend and the observed asymmetric behavior. Increase in substrate boundary temperature by 100 °C reduces the drain current by 17% and decreases the maximum electron temperature by 8%. The first effect increases device delay and the second effect decreases the possibility of device degradation by charge trapping in the gate oxide. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 1737-1739 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The cross-plane thermal conductivity of four Si/Si0.7Ge0.3 superlattices and three Si0.84Ge0.16/Si0.76Ge0.24 superlattices, with periods ranging from 45 to 300 and from 100 to 200 Å, respectively, were measured over a temperature range of 50 to 320 K. For the Si/Si0.7Ge0.3 superlattices, the thermal conductivity was found to decrease with a decrease in period thickness and, at a period thickness of 45 Å, it approached the alloy limit. For the Si0.84Ge0.16/Si0.76Ge0.24 samples, no dependence on period thickness was found and all the data collapsed to the alloy value, indicating the dominance of alloy scattering. This difference in thermal conductivity behavior between the two superlattices was attributed to interfacial acoustic impedance mismatch, which is much larger for Si/Si0.7Ge0.3 than for Si0.84Ge0.16/Si0.76Ge0.24. The thermal conductivity increased slightly up to about 200 K, but was relatively independent of temperature from 200 to 320 K. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 4000-4005 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Computational predictions, based upon conventional one-dimensional tunneling theory, are presented for charge and energy transport by electron tunneling thermoelectric effect. It is shown that a temperature difference across a tunnel junction connected in an open electrical circuit produces a thermopower S and a heat conductance HV. In a closed circuit, the temperature difference drives a tunnel current which is quantified by a current conductance Q =|| Jth/ΔT||LimΔT(large-closed-square)0 (where Jth is the current density) and a heat conductance HJ. The thermopower S is shown to be relatively insensitive to image potentials and barrier thickness, whereas the transport coefficients Q, HJ, and HV are highly sensitive to junction parameters. The calculations for a "generic'' Al-Al2O3-Al junction with a 25 A(ring) barrier thickness indicate that S and Q could be measurable, whereas HV and HJ are probably below the limits of detection. Although S might be measured by a scanning tunneling microscope, it is not clear at present how tip geometry would influence the measurement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 62 (1991), S. 567-578 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A new triple correlation technique for measuring the complete intensity profile of ultrashort optical pulses is described. The triple correlation preserves the phase information of the input pulse so that a reconstruction of the triply correlated signal will provide a unique reconstruction of the input. The new technique described here uses two second-order, nonlinear optical interactions for the generation of a triply correlated signal. A derivation of the measured triple-correlation signal and the pulse reconstruction is given. The effects of noise on the measured signal are also examined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature biotechnology 19 (2001), S. 856-860 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Diagnosis and monitoring of complex diseases such as cancer require quantitative detection of multiple proteins. Recent work has shown that when specific biomolecular binding occurs on one surface of a microcantilever beam, intermolecular nanomechanics bend the cantilever, which can be optically ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The thermal conductance of delamination cracks in a unidirectionally reinforced ceramic composite is investigated. A phase-sensitive photothermal technique is used to measure the crack conductance in situ under load. Special emphasis is given to the effects of the local crack opening displacement (δ). A crack conductance model that considers the contributions from both the air and the fibers within the crack is developed and compared with the measurements. Despite considerable scatter in the experimental data, the model adequately predicts the increased conductance that is associated with fiber bridging, as well as the overall trend that is observed with δ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...