Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 60 (1995), S. 447-453 
    ISSN: 1432-0630
    Keywords: 78.70.Bj ; 36.10.Dr ; 61.41.+e
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We have determined the positron mobility (μ+) in polyethylene samples (67.2% crystalline, glass transition temperatureT g=151 K) in the 64–400 K temperature range by Doppler shift measurements. A method based on the simulataneous observation of two γ lines from133Ba and137Cs radioactive sources together with the positron annihilation γ line, was employed to measure the Doppler shift of the 511 keV γ line as a function of the electric field applied to the samples. With this method we were able to measure at the same time the drift velocity of positrons and theS parameter. This parameter is very important in the interpretation of the mobility trend in samples where the positron states change with temperature. The positron mobility was corrected for positronium formation. μ+ at 64 K is 31.7±0.8 cm2 V−1 s−1 then decreases up to 123 K, increases at 148 K and decreases again up to 170 K (μ+=26.9±0.8 cm2 V−s−). This sharp change in mobility is centred around the glass transition temperature of our samples. Then the mobility remains almost constant up to 230 K. From 250 K to 377 K, μ+ increases and reaches the value of 38.4±1.0 cm2 V−1s−1. The corrected experimental data were well fitted by a simple model taking into account scattering and a thermally activated process (hopping mechanism).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 175-178 (Nov. 1994), p. 655-658 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 60 (1995), S. 447-453 
    ISSN: 1432-0630
    Keywords: PACS: 78.70.Bj; 36.10.Dr; 61.41.+e
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract.  We have determined the positron mobility (μ+) in polyethylene samples (67.2% crystalline, glass transition temperature T g=151 K) in the 64–400 K temperature range by Doppler shift measurements. A method based on the simultaneous observation of two γ lines from 133Ba and 137Cs radioactive sources together with the positron annihilation γ line, was employed to measure the Doppler shift of the 511 keV γ line as a function of the electric field applied to the samples. With this method we were able to measure at the same time the drift velocity of positrons and the S parameter. This parameter is very important in the interpretation of the mobility trend in samples where the positron states change with temperature. The positron mobility was corrected for positronium formation. μ+ at 64 K is 31.7±0.8 cm2 V-1 s-1 then decreases up to 123 K, increases at 148 K and decreases again up to 170 K (μ+=26.9±0.8 cm2 V-1 s-1). This sharp change in mobility is centred around the glass transition temperature of our samples. Then the mobility remains almost constant up to 230 K. From 250 K to 377 K, μ+ increases and reaches the value of 38.4±1.0 cm2V-1s-1. The corrected experimental data were well fitted by a simple model taking into account scattering and a thermally activated process (hopping mechanism).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...