Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Journal of pineal research 36 (2004), S. 0 
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Antioxidant enzymes form the first line of defense against free radicals in organisms. Their regulation depends mainly on the oxidant status of the cell, given that oxidants are their principal modulators. However, other factors have been reported to increase antioxidant enzyme activity and/or gene expression. During the last decade, the antioxidant melatonin has been shown to possess genomic actions, regulating the expression of several genes. Melatonin also influences both antioxidant enzyme activity and cellular mRNA levels for these enzymes. In the present report, we review the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress. We also analyze the possible mechanisms by which melatonin regulates these enzymes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Journal of pineal research 33 (2002), S. 0 
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Neuroprotection provided by melatonin has been shown to be more relevant in vivo than in neuronal cultures. Given the role of astrocytes in neuronal support and protection, studies were initiated to elucidate the possible protective effect of the antioxidant melatonin against oxidative stress in these cells. Both low and high concentrations of melatonin were able to protect astrocytes with even higher efficiency than the known antioxidant glutathione (GSH). The mechanisms involved may be different for high (1 mm) and low (100 nm) concentrations of the indole. The GSH cycling appeared not to be involved in the protection at high doses. High doses of melatonin neither influenced GSH levels nor gene expression for the several antioxidant enzymes studied; thus, melatonin's protective effect was likely because of its free radical scavenging action in this case. However, melatonin concentrations in the nanomolar range require the presence of GSH to be effective. No increase in GSH synthesis was found, but low doses of melatonin increased gene expression and activity of glutathione peroxidase. As this enzyme requires GSH as substrate to be active, this may be the reason why the effect of this melatonin concentration is GSH dependent. In vivo, melatonin levels exhibit a wide range of concentrations with much lower levels in the blood and significantly higher concentrations in other body fluids and within cells. Thus, melatonin may normally function as an indirect and direct antioxidant in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Glutamate is responsible for most of the excitatory synaptic activity and oxidative stress induction in the mammalian brain. This amino acid is increased in the substantia nigra in parkinsonism due to the lack of dopamine restraint to the subthalamic nucleus. Parkinson's disease also shows an increase of iron levels in the substantia nigra and a decrease of glutathione, the antioxidant responsible for the ascorbate radical recycling. Considered together, these facts could make the antioxidant ascorbate behave as a pro-oxidant in parkinsonism. Since both glutamate and ascorbate are present in the synaptosomes and neurons of substantia nigra, we tested 1) if glutamate is able to induce oxidative stress independently of its excitatory activity, and 2) if ascorbate may have synergistic effects with glutamate when these two molecules co-exist. Brains were homogenized in order to disrupt membranes and render membrane receptors and intracellular signaling pathways non-functional. In these homogenates glutamate induced lipid peroxidation, indicating that this amino acid also may cause oxidative stress not mediated by its binding to glutamate receptors or cystine transporters. Ascorbate also induced lipid peroxidation thus behaving as a pro-oxidant. Both substances together produced an additive effect but they did not synergize. Given that melatonin is a potent physiological antioxidant with protective effects in models of neurotoxicity, we tested the role of this secretory product on the pro-oxidant effect of both compounds given separately or in combination. We also checked the protective ability of several other antioxidants. Pharmacological doses of melatonin (millimolar), estrogens, pinoline and trolox (micromolar) prevented the oxidant effect of glutamate, ascorbate, and the combination of both substances. Potential therapeutic application of these results is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...