Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 2896-2905 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: CuInxGa1−xSe2 thin films, with various Ga/(Ga+In) ratios, suitable for solar cells were processed by selenizing stacked Cu, Ga, and In precursor layers in a H2Se reactor in the temperature range of 400–500 °C. Cu/Ga/In and Cu/In/Ga precursors were obtained by sequential sputtering of the elemental layers. The Cu/Ga/In and Cu/In/Ga precursors, and the selenized films were characterized by scanning electron microscopy, x-ray diffraction, energy dispersive spectroscopy, and Auger electron spectroscopy. The precursors contained only binary and elemental phases in the as-deposited condition and after annealing. The selenized films had a nonuniform distribution of Ga and In. The surface of the selenized films were In rich, while the Mo/film interface in these films was Ga rich. The selenized films with Ga/(Ga+In) ratios greater than 0.25 contain graded Ga and In compositions, and the selenized films with Ga/(Ga+In) ratios less than 0.6 contain a phase-separated mixture of CuInSe2 and CuGaSe2 with the CuInSe2 near the surface and the CuGaSe2 near the Mo/film interface. Single phase, homogeneous CuInxGa1−xSe2 films were obtained by annealing the as-selenized films in argon in the temperature range of 500–600 °C for 60 min. Interdiffusion of In and Ga between the CuGaSe2 and the CuInSe2 phases was found to be responsible for the homogenization process. This homogenization process does not occur in the presence of a selenium atmosphere. Diffusion measurements yielded similar interdiffusion coefficients for Ga and In. The annealing temperature and time to effect homogenization depends on the Ga/(Ga+In) ratio of the absorber films. Films with lower Ga/(Ga+In) ratios require a homogenization temperature of 600 °C or more and films with higher Ga/(Ga+In) ratios homogenize at a lower temperature of 400–500 °C, for an annealing time of 60 min.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 67 (1995), S. 3978-3980 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Homogeneous single phase Cu(InGa)Se2 films with Ga/(In+Ga)=0.25–0.75 were formed by reacting Cu–Ga–In precursor films in H2Se followed by an anneal in Ar. X-ray diffraction and Auger analysis show that the metal precursors reacted only in H2Se were multiphase films having a layered CuInSe2/CuGaSe2 structure. Solar cells made with the multiphase films have properties similar to CuInSe2 devices. Cells made with the annealed single phase films behave like Cu(InGa)Se2 devices with the band gap expected for the precursor composition. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...