Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Osteoblasts ; Preosteoclasts ; Cell differentiation ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Osteoblasts are involved in the bone resorption process by regulating osteoclast maturation and activity. In order to elucidate the mechanisms underlying osteoblast/preosteoclast cell interactions, we developed an in vitro model of co-cultured human clonal cell lines of osteoclast precursors (FLG 29.1) and osteoblastic cells (Saos-2), and evaluated the migratory, adhesive, cytochemical, morphological, and biochemical properties of the co-cultured cells. In Boyden chemotactic chambers, FLG 29.1 cells exhibited a marked migratory response toward the Saos-2 cells. Moreover, they preferentially adhered to the osteoblastic monolayer. Direct co-culture of the two cell types induced: (1) positive staining for tartrate-resistant acid phosphatase in FLG 29.1 cells; (2) a decrease of the alkaline phosphatase activity expressed by Saos-2 cells; (3) the appearance of typical ultrastructural features of mature osteoclasts in FLG 29.1 cells; (4) the release into the culture medium of granulocyte-macrophage colony stimulating factor. The addition of parathyroid hormone to the co-culture further potentiated the differentiation of the preosteoclasts, the cells tending to fuse into large multinucleated elements. These in vitro interactions between osteoblasts and osteoclast precursors offer a new model for studying the mechanisms that control osteoclastogenesis in bone tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Key words: Osteoblasts ; Preosteoclasts ; Cell differentiation ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Osteoblasts are involved in the bone resorption process by regulating osteoclast maturation and activity. In order to elucidate the mechanisms underlying osteoblast/preosteoclast cell interactions, we developed an in vitro model of co-cultured human clonal cell lines of osteoclast precursors (FLG 29.1) and osteoblastic cells (Saos-2), and evaluated the migratory, adhesive, cytochemical, morphological, and biochemical properties of the co-cultured cells. In Boyden chemotactic chambers, FLG 29.1 cells exhibited a marked migratory response toward the Saos-2 cells. Moreover, they preferentially adhered to the osteoblastic monolayer. Direct co-culture of the two cell types induced: (1) positive staining for tartrate-resistant acid phosphatase in FLG 29.1 cells; (2) a decrease of the alkaline phosphatase activity expressed by Saos-2 cells; (3) the appearance of typical ultrastructural features of mature osteoclasts in FLG 29.1 cells; (4) the release into the culture medium of granulocyte-macrophage colony stimulating factor. The addition of parathyroid hormone to the co-culture further potentiated the differentiation of the preosteoclasts, the cells tending to fuse into large multinucleated elements. These in vitro interactions between osteoblasts and osteoclast precursors offer a new model for studying the mechanisms that control osteoclastogenesis in bone tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The role of vascularization in the process of bone resorption has not been clarified. The interactions between vascular endothelium and osteoclast progenitors were analyzed using clonal cell lines of bone-derived endothelial and preosteoclastic cells. Insulin-like growth factor I is a major chemotactic stimulator of preosteoclastic cell migration mediated by bone endothelial cells. Osteoclast precursors rapidly adhered to bone endothelial monolayers. This phenomenon appeared to be cell-specific and mediated through the binding of vitronectin and fibronection receptors to fibronectin. In addition, direct contact with bone endothelial cells induced osteoclast progenitors to differentiate into more mature elements, with the tendency to cluster together to form large multinucleated cells. These findings demonstrated specific in vitro interactions between bone endothelial cells and osteoclast progenitors, offering a new model for understanding the molecular mechanisms which direct the processes of osteoclast recruitment and ontogeny. © 1995 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...