Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 3548-3558 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Highly monochromatized electrons (with energy distributions of less than 30 meV FWHM) are used in a crossed beam experiments to investigate electron attachment to oxygen clusters (O2)n at electron energies from approximately zero eV up to several eV. At energies close to zero the attachment cross section for the reaction (O2)n+e→(O2)m− (for m=1, 2, and 3) rises strongly with decreasing electron energy compatible with s-wave electron capture to (O2)n. Peaks in the oxygen attachment cross sections present at higher energies ((approximate)80 meV, 193 meV, 302 meV) can be ascribed to vibrational levels of the anion populated by attachment of an electron to a single oxygen molecule within the target cluster via a direct Franck–Condon transition from the ground vibrational state v=0 to a vibrational excited state v′=7,8,9,... of the anion produced. The vibrational structures observed here for the first time can be quantitatively accounted for by model calculations using a microscopic model to examine the attachment of an electron to an oxygen molecule inside a cluster. This involves (i) molecular dynamics simulations to calculate the structure of neutral clusters prior to the attachment process and (ii) calculation of the solvation energy of an oxygen anion in the cluster from the electrostatic polarization of the molecules of the cluster. The occurrence of this polarization energy at the surface of larger clusters explains the appearance of an s-wave capturing cross section at 0 eV and the slightly smaller spacings (compared to the monomer case) between the peaks at finite energy, as observed experimentally. The relative transition probabilities from the ground state of the neutral oxygen molecule to the different vibrational levels of the anion are obtained by calculating the corresponding Franck–Condon factors thereby resulting in a reasonable theoretical fit to the observed yields of negatively charged oxygen molecules and clusters. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0009-2614
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 107 (1997), S. 8955-8962 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Using a crossed electron-molecule beam ion source in combination with a quadrupole mass spectrometer we have studied the electron energy dependence of the dissociative attachment process CHCl3+e→Cl− at electron energies from about 0 to 2 eV and in a target gas temperature range of about 300–430 K. The energy resolution and working conditions of this newly constructed crossed beams machine have been characterized using CCl4 as a test and calbrant gas. Utilizing the improved energy resolution of the present experimental setup (which allows measurements with FWHM energy spreads down to below 5 meV) it was possible to determine the accurate shape and magnitude of the cross section function in the low-energy range. This leads to the conclusion that between an electron energy of about 20 and 130 meV the reaction proceeds via deBroglie s-wave capture, whereas at higher energy (above about 0.4 eV) autodetachment plays a significant role. Moreover, the present measurements allow us to clarify previously reported differences in the absolute cross section, the number of peaks and in the energy position of these peaks. Finally, by analyzing the measured strong temperature dependence of the cross section close to zero electron energy the activation barrier for this dissociative attachment was determined to be 110±20 meV in good agreement with thermochemical data from swarm experiments performed under thermal equilibrium. Taking into account the present results it is also possible to discuss the mechanism for the existence of the second peak. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Czechoslovak journal of physics 49 (1999), S. 383-392 
    ISSN: 1572-9486
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Using a recently constructed high resolution crossed electron/molecular beam apparatus consisting of a hemispherical electron monochromator and a quadrupole mass spectrometer we have measured the relative production cross sections for CI– and F– via electron attachment to CF2Cl2. The relative Cl– cross section is placed on an absolute scale by reference to an absolute rate coefficient using a calibration method involving integration of the measured anion signal. The most efficient Cl– production process is at about zero energy and its magnitude is resolution limited. The present high resolution value of 6 × 10−16 cm2 compares well with an earlier value reported by Chen and Chantry. A second peak is detected at around 0.8 eV in accordance with some of the earlier beam and swarm measurements. The observed production of F– has an appearance energy of 1.9 eV and the energy of maximum cross section is 3.36 eV, the latter value comparing well with several previous studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...