Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 8 (1975), S. 62-67 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 433-444 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The synthesis, dilute solution characterization, and thermal analysis of seven polyaryloxyphosphazenes are described. Synthesis is accomplished by the ring-opening polymerization of hexachlorocyclotriphosphazene at 245°C, followed by reaction of polydichlorophosphazene with sodium aryloxide salts in solution at 115°C. Polymers prepared and characterized have the general structure [(ArO)2PN]n, with Ar = C6H5, m- and p-CH3C6H4, m- and p-ClC6H4, p-C2H5C6H4, or p-CH3OC6H4. Elemental and infrared analyses show these polymers are essentially free of reactive chlorine sites. All the polymers displayed high intrinsic viscosities [η] 〉 1 dl/g, in tetrahydrofuran or chloroform. Closer examination of the dilute solution properties of two polyaryloxyphosphazenes revealed high molecular weights (M̄w〉 6 × 105) and broad molecular weight distributions (M̄w/M̄n 〉 4.7). The experimental values for the Z-average radii of gyration, 〈S2〉z1/2, characterized at near theta conditions, are larger than the calculated values for a freely rotating chain, which suggests that these polymers are relatively linear and not highly branched. Thermal analysis revealed second-order glass transitions between -37 and +13°C and first-order endothermic transitions between 43 and 160°C for the different polymers. Although crystalline structure can persist above this first-order transition, this temperature can be regarded as a melting temperature or softening temperature at which films can be molded. Decomposition temperatures, measured in argon and oxygen, ranged from 250°C to 400°C.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 19 (1979), S. 1122-1128 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The thermal transition behavior of a series of hydroxy terminated polybutadiene (HTPBD) containing segmented polyurethanes has been studied by differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA). Four transition regions are observed; the soft segment Tg, at -74°C, two hard segment transitions T1, at 40°C and T2 at 103°C and a softening region by TMA at 180°C, presumed to arise from the dissociation of allophonate bonding, The low Tg, only 7°C higher than the Tg of free HTPBD, indicates nearly complete phase segregation despite the amorphous nature of the hard segment structure. The dependence of T1, on hard segment length and thermal cycling suggests that it represents domains consisting primarily of shorter hard segments units. Factors contributing to the rather low mechanical properties of HTPBD polyurethanes are also discussed.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...