Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 9 (1992), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 86 (1992), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Acetate turnover was measured in slurries of anoxic methanogenic paddy soil after addition of carrier-free [2-14C]-acetate. Acetate concentrations stayed fairly constant for about 1–2 days indicating steady state between production and consumption reactions. Depending on the experiment, acetate concentrations were between 100 and 3000 μM. Turnover rates were determined from the logarithmic decrease of [2-14C]-acetate or from the accumulation of acetate in the presence of chloroform resulting in similar values, i.e. 12–13 nmol h−1g−1d.w. soil at 17°C and 36–88 nmol h−1g−1d.w. at 30°C. Acetate consumption was completely inhibited by chloroform. The respiratory index (RI) was 〈 0.27. Hence, acetate was apparently consumed by methanogenic bacteria. About 80–90% of the CH4 produced originated from the methyl group of acetate. The role of homoacetogenesis for acetate production was studied by measuring the incorporation of radioactive bicarbonate into acetate. In different experiments, CO2 incorporation accounted for fractions of 1–60% of the acetate produced, about 10% being the most likely value for steady-state conditions. The fraction increased at high H2 concentrations and decreased at high acetate concentrations. The rate of H2 production that was required for chemolithotrophic acetate production from CO2 was two orders of magnitude higher than the actually measured rate. Hence, most of the CO2 incorporation into acetate was caused by electron donors other than H2 (e.g., carbohydrates) and/or by exchange reactions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 62 (1989), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Interspecies H2 transfer within methanogenic bacterial associations (MBA) accounted for 95–97% of the conversion of 14CO2 to 14CH4 in anoxic paddy soil. Only 3–5% of the 14CH4 were produced from the turnover of dissolved H2. The H2-syntrophic MBA developed within 5 days after the paddy soil had been submerged and placed under anoxic atmosphere. Afterwards, both the contribution of MBA to H2-dependent methanogenesis and the turnover of dissolved H2 did not change significantly for up to 7 months of incubation. However, while the rates of H2-dependent methanogenesis stayed relatively constant, the rates of total methanogenesis decreased. The contribution of MBA to H2-dependent methanogenesis was further enhanced to 99% when the temperature was shifted from 30°C to 17°C, or when the soil had been planted with rice. This enhancement was partially due to an increased utilization of dissolved H2 by chloroform-insensitive non-methanogenic bacteria, most probably homoacetogens, so that CH4 production was almost completely restricted to H2-syntrophic MBA. The activity of MBA, as measured by the conversion of 14CO2 to 14CH4, was stimulated by glucose, lactate, and ethanol to a similar or greater extent than by exogenous H2. Propionate and acetate had no effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...