Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5079
    Keywords: bacteriochlorophyll ; energy transfer ; light-harvesting complexes ; membrane proteins ; photosynthetic bacteria ; reaction centres
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Now is a very exciting time for researchers in the area of the primary reactions of purple bacterial photosynthesis. Detailed structural information is now available for not only the reaction center (Lancaster et al. 1995, in: Blankenship RE et al. (eds) Anoxygenic Photosynthetic Bacteria, pp 503–526), but also LH2 from Rhodopseudomonas acidophila (McDermott et al. 1995, Nature 374: 517–521) and LH1 from Rhodospirillum rubrum (Karrasch et al. 1995. EMBO J 14: 631–638). These structures can now be integrated to produce models of the complete photosynthetic unit (PSU) (Papiz et al., 1996, Trends Plant Sci, in press), which opens the door to a much more detailed understanding of the energy transfer events occurring within the PSU.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: (bacterio)chlorophyll ; energy transfer ; light harvesting ; membrane proteins ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Unlike the α and β polypeptides of the core light-harvesting complex (LH1) of Rhodobacter (Rb.) sphaeroides, the α and β polypeptides of the peripheral light-harvesting complex (LH2) of this organism will not form a subunit complex by in vitro reconstitution with bacteriochlorophyll. Guided by prior experiments with the LH1 β polypeptides of Rb. sphaeroides and Rhodospirillum rubrum, which defined a set of interactions required to stabilize the subunit complex, a series of mutations to the Rb. sphaeroides LH2 β polypeptide was prepared and studied to determine the minimal changes necessary to enable it to form a subunit-type complex. Three mutants were prepared: Arg at position −10 was changed to Asn (numbering is from the conserved His residue which is known to be coordinated to bacteriochlorophyll); Arg at position −10 and Thr at position +7 were changed to Asn and Arg, respectively; and Arg at position −10 was changed to Trp and the C-terminus from +4 to +10 was replaced with the amino acids found at the corresponding positions in the LH1 β polypeptide of Rb. sphaeroides. Only this last multiple mutant polypeptide formed subunit-type complexes in vitro. Thus, the importance of the C-terminal region, which encompasses conserved residues at positions +4, +6 and +7, is confirmed. Two mutants of the LH1 β polypeptide of Rb. sphaeroides were also constructed to further evaluate the interactions stabilizing the subunit complex and those necessary for oligomerization of subunits to form LH1 complexes. In one of these mutants, Trp at position −10 was changed to Arg, as found in LH2 at this position, and in the other His at position −18 was changed to Val. The results from these mutants allow us to conclude that the residue at the −10 position is unimportant in subunit formation or oligomerization, while the strictly conserved His at −18 is not required for subunit formation but is very important in oligomerization of subunits to form LH1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 236 (1993), S. 227-234 
    ISSN: 1617-4623
    Keywords: Rhodobacter sphaeroides ; Bacteriochlorophyll biosynthesis ; bchCA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This study has identified by sequence analysis a single gene in the bchC locus of Rhodobacter sphaeroides and three genes, designated bchX, Y and Z, in the bchA locus, which was previously thought to contain only a single gene. All four genes may reside within the same operon and are transcribed in the order bchC-X-Y-Z. Complementation analysis of eight transposon insertion mutants within these genes suggests that bchX, Y and Z are essential for the reduction of 2-devinyl-2hydroxyethyl chlorophyllide a and that bchC encodes the 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide a dehydrogenase. Similarity between the putative BchX protein and dinitrogenase reductase proteins suggests that BchX may also be a reductase, supplying electrons for reduction of 2-devinyl-2-hydroxyethyl chlorophyllide a.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...