Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 28 (1995), S. 7744-7755 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 860-869 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In the development of advanced composite materials, the mechanical behavior of the matrix is of critical importance. The next generation of composite materials will be based on high modulus tough matrices, of which poly(aryl ether ether ketone) [hereinafter, referred to as PEEK] is one of the first crystalline thermoplastics to receive serious attention. As in all crystalline polymers, the matrix is itself a composite material whose properties depend significantly on the crystalline morphology developed during processing. In this contribution, the current understanding of crystallization in PEEK and its influence on mechanical properties is reviewed. Problems yet to be resolved are highlighted.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 763-781 
    ISSN: 0887-6266
    Keywords: random copolyesters ; copolymers ; crystallization ; melting ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The melting behavior of poly(ethylene terephthalate co-1,4-cyclohexylene dimethylene terephthalate) [PET/CT] random copolyesters has been studied. The basis of this analysis was the triple melting behavior of PET homopolymers, which is commonly observed after a period of isothermal crystallization followed by linear heating in a differential scanning calorimeter. Both ET and CT homopolymers are able to crystallize, and as a consequence, the copolymer morphology depends on the ET/CT ratio. It has been reported that at low CT concentrations, the ET units can crystallize with complete rejection of the CT units and that at high CT concentrations, the CT units can cocrystallize with the ET units. In the present work, low CT concentrations were selected, as they are completely rejected from the ET crystals. The purpose was to further test the hypothesis that in the triple melting behavior of PET homopolymers, the second DSC melting endotherm is related to secondary species crystallized by material rejected from the primary crystals. This concept arose from our previous work, where it was speculated that increasing the average molecular-weight of PET would enhance molecular entanglement and increase secondary crystallization. This process would give rise to a higher amount of species being rejected from the main crystals, i.e., an increase of secondary crystallization would occur, and as a consequence the second melting endotherm would be enhanced. Similar to the effect of molecular weight, such behavior has been observed as a function of rejected copolymer content. This gives support to our previously proposed step-like crystallization and melting mechanism for PET homopolymers, and has the potential to be extended to other high temperature semicrystalline polymeric systems. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 763-781, 1998
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1757-1774 
    ISSN: 0887-6266
    Keywords: polyesters ; crystallization ; melting ; morphology ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The melting behavior of isothermally crystallized PET has been studied using linear heating in a differential scanning calorimeter (DSC). Variables such as crystallization temperature, crystallization time, heating rate, and average molecular weight are the main focus of the study. On the basis of several experimental techniques, a correlation of the melting behavior of PET with the amount of secondary crystallization was found to exist. It was observed that the triple melting of PET is a function of programmable DSC variables such as crystallization temperature, crystallization time, and heating rate. However, in testing the hypothesis that there was a correlation between melting endotherms and secondary crystallization inside spherulites, it was found necessary to use a DSC-independent variable in order to enhance the observed effects. Therefore, on the basis of a crystallization model that involves secondary branching along the edges of parent lamellar structures, it was speculated that an increase in the average molecular weight could affect the triple melting of PET due to an increase of rejected portions of the macromolecules. It was found that the second melting endotherm increased, apparently, at the expense of the third one as the average molecular weight was increased. The second melting endotherm was also found to correlate proportionally with the amount of secondary crystallization inside spherulites. The results support a model of crystallization which basically consists of parent crystals and at least one population of secondary, probably metastable, crystals. This latter structural component must involve excluded portions of the macromolecules that did not crystallize during the isothermal crystallization period of the parent crystals. An increase of molecular weight gives rise to a higher entanglement density which in turn increases the fraction of initially rejected chain sections and therefore the amount of secondary crystallization. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1757-1774, 1997
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...