Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1459
    Keywords: Key words Non-organic ; Paralysis ; Diagnosis ; Hoover ; Quantitative
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The differentiation of “non-organic” limb weakness from genuine paralysis is sometimes difficult in neurological practice. To address this problem, we developed a computerized quantitative method, based on the Hoover’s test principle, that determines the extent of involuntary limb activation when contralateral movement is performed. Measurements of hip or arm extension isometric force are performed during direct maximal voluntary effort and during contralateral hip flexion. Maximal involuntary/voluntary force ratio (IVVR) is calculated. IVVR of the lower limbs in ten healthy subjects was 0.614, 0.044 (mean, SEM). Similar results were obtained from seven patients with genuine weakness and in the non-affected limbs of nine patients with “non-organic” mono- or hemiparesis. In contrast, IVVR in the affected limbs in the “non-organic” group was markedly increased (2.48, 0.61; P 〈 0.001). The same pattern was elicited in the upper limbs (2.27, 0.46 vs 0.406, 0.06; P 〈 0,001). We conclude that Hoover’s sign in “non-organic” paralysis is a preservation or increase of a normal synkinetic phenomenon. Quantitative measurement of the IVVR can serve as a useful ancillary test in diagnosing non-organic weakness in either lower or upper limbs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 261 (1976), S. 420-422 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] 9-AAP (D. Atlas and A. Levitzki, unpublished) is a fluorescent analogue of propranolol (N-[-2-hydroxy-3-naphthoxy propyl]-N?-[-9-amino acridin] isopropyl diamine) (Fig. 1). Its spectroscopic molar extinction coefficient, E260, in water is 1.07x105. The inhibitory effect of 9-AAP was calculated from ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 55 (1990), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) HC1 (25 mg/kg) in pregnant female mice at the 17th day of gestation markedly depleted striatal dopamine (DA) concentrations in the mothers 24 h later and at 24 h and 28 days after delivery. By contrast, in the offspring of the female mice exposed to MPTP during pregnancy, fetal brain DA concentrations at 24 h after injection and at 24 h after birth and striatal DA levels at 14 and 28 days postnatally were unaffected and identical to those in age-matched controls. The postnatal ontogenesis of striatal DA levels was identical in offspring of control vehicle- and MPTP-treated pregnant mice. Also, prenatal challenge with MPTP did not make nigrostriatal DA neurons more vulnerable to a second postnatal treatment with the toxin. Striatal DA depletions were identical in 6-week-old mice given MPTP, whether they were exposed to MPTP or to vehicle in utero. Monoamine oxidase (EC 1.4.3.4; MAO) type B activity was extremely low in the fetal brain and, relatively, much lower than that of MAO-A. Prenatal MPTP administration reduced maternal striatal and also embryonal brain MAO-B activity at 24 h post treatment but did not alter the normal postnatal development of striatal MAO-A and -B activities in the offspring. Study suggests that resistance of fetal DA neurons to the DA-depleting effect of MPTP may be due, at least in part, to an absence in the embryonal brain of adequately developed MAO-B activity required for the conversion of MPTP to its toxic metabolite, 1-methyl-4-phenylpyridinium ion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The etiology of Parkinson's disease is still unknown, though current investigations support the notion of the pivotal involvement of oxidative stress in the process of neurodegeneration in the substantia nigra (SN). In the present study, we investigated the molecular mechanisms underlying cellular response to a challenge by dopamine, one of the local oxidative stressors in the SN. Based on studies showing that nuclear factor kappa B (NF-κB) is activated by oxidative stress, we studied the involvement of NF-κB in the toxicity of PC12 cells following dopamine exposure. We found that dopamine (0.1–0.5 m m) treatment increased the phosphorylation of the IκB protein, the inhibitory subunit of NF-κB in the cytoplasm. Immunoblot analysis demonstrated the presence of NF-κB-p65 protein in the nuclear fraction and its disappearance from the cytoplasmic fraction after 2 h of dopamine exposure. Dopamine-induced NF-κB activation was also evidenced by electromobility shift assay using radioactive labeled NF-κB consensus DNA sequence. Cell-permeable NF-κB inhibitor SN-50 rescued the cells from dopamine-induced apoptosis and showed the importance of NF-κB activation to the induction of apoptosis. Furthermore, flow cytometry assay demonstrated a higher level of translocated NF-κB-p65 in the apoptotic nuclei than in the unaffected nuclei. In conclusion, our findings suggest that NF-κB activation is essential to dopamine-induced apoptosis in PC12 cells and it may be involved in nigral neurodegeneration in patients with Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Journal of neurochemistry 73 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : Shrinkage and collapse of the neuritic network are often observed during the process of neuronal apoptosis. However, the molecular and biochemical basis for the axonal damage associated with neuronal cell death is still unclear. We present evidence for the involvement of axon guidance molecules with repulsive cues in neuronal cell death. Using the differential display approach, an up-regulation of collapsin response mediator protein was detected in sympathetic neurons undergoing dopamine-induced apoptosis. A synchronized induction of mRNA of the secreted collapsin-1 and the intracellular collapsin response mediator protein that preceded commitment of neurons to apoptosis was detected. Antibodies directed against a conserved collapsin-derived peptide provided marked and prolonged protection of several neuronal cell types from dopamine-induced apoptosis. Moreover, neuronal apoptosis was inhibited by antibodies against neuropilin-1, a putative component of the semaphorin III/collapsin-1 receptor. Induction of neuronal apoptosis was also caused by exposure of neurons to semaphorin III-alkaline phosphatase secreted from 293EBNA cells. Anti-collapsin-1 antibodies were effective in blocking the semaphorin III-induced death process. We therefore suggest that, before their death, apoptosis-destined neurons may produce and secrete destructive axon guidance molecules that can affect their neighboring cells and thus transfer a “death signal” across specific and susceptible neuronal populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Increasing evidence suggests that enhanced production of reactive oxygen species (ROS) activates the MAP kinases, c-Jun N-terminal protein kinase (JNK) and mitogen-activated protein kinase MAPK (p38). These phosphorylated intermediates at the stress-activated pathway induce expression of matrix metalloproteinases (MMPs), leading to inflammatory responses and pathological damages involved in the etiology of multiple sclerosis (MS). Here we report that N-acetylcysteine amide (AD4) crosses the blood–brain barrier (BBB), chelates Cu2+, which catalyzes free radical formation, and prevents ROS-induced activation of JNK, p38 and MMP-9. In the myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, oral administration of AD4 drastically reduced the clinical signs, inflammation, MMP-9 activity, and protected axons from demylination damages. In agreement with the in vitro studies, we propose that ROS scavenging by AD4 in MOG-treated animals prevented MMP's induction and subsequent damages through inhibition of MAPK pathway. The low toxicity of AD4 coupled with BBB penetration makes this compound an excellent potential candidate for the therapy of MS and other neurodegenerative disorders.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The neurotransmitter dopamine is capable of inducing apoptosis in postmitotic sympathetic neurons via its oxidative metabolites. To detect genes whose expression is transcriptionally regulated during the early stages of dopamine-triggered apoptosis, we applied the differential display method to cultured sympathetic neurons. One of the up-regulated genes was identified as cyclin B2, which exhibited two waves of induction and destruction, both at the mRNA and protein levels, resembling the sequential oscillations typical of two successive mitotic events in proliferating cells. The time window between the two waves was characterized by a change in expression of other cell-cycle stage-specific genes, and oscillations in proliferating cell nuclear antigen and alterations in cyclin A were observed. Cyclin D1 and cyclin-dependent kinases were undetected and no sign of active DNA synthesis could be observed, indicating that activation of cell-cycle components is incomplete. In comparison with a normal cell cycle, temporal expression profile of these mediators was unsynchronized. Whereas the first wave of cell-cycle changes occurred prior to the commitment of the cells to the death process and could be tolerated by the cells, the second wave of changes coincided with the death commitment point. Our findings indicate that inappropriate and incomplete activation of some cell cycle-related genes in postmitotic neurons occurs during dopamine-triggered neuronal apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It is believed that oxidative stress (OS) plays an important role in the loss of dopaminergic nigrostriatal neurons in Parkinson's disease (PD) and that treatment with antioxidants might be neuroprotective. However, most currently available antioxidants cannot readily penetrate the blood brain barrier after systemic administration. We now report that AD4, the novel low molecular weight thiol antioxidant and the N-acytel cysteine (NAC) related compound, is capable of penetrating the brain and protects neurons in general and especially dopaminergic cells against various OS-generating neurotoxins in tissue cultures. Moreover, we found that treatment with AD4 markedly decreased the damage of dopaminergic neurons in three experimental models of PD. AD4 suppressed amphetamine-induced rotational behaviour in rats with unilateral 6-OHDA-induced nigral lesion. It attenuated the reduction in striatal dopamine levels in mice treated with 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP). It also reduced the dopaminergic neuronal loss following chronic intrajugular administration of rotenone in rats. Our findings suggest that AD4 is a novel potential new neuroprotective drug that might be effective at slowing down nigral neuronal degeneration and illness progression in patients with PD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Bcl-2 is an antiapoptotic protein located in the outer mitochondrial membrane. Cellular perturbations associated with programmed cell death may be the consequence of disrupted mitochondrial function as well as excessive production of reactive oxygen species (ROS). Numerous studies indicate that Bcl-2 is involved in opposing cell death induced by oxidative stimuli, but its mode of action is uncertain. We reexamined the role of Bcl-2 by using a loss-of-function model, Bcl-2 knockout mice. Brains from Bcl-2-deficient mice had a 43% higher content of oxidized proteins and 27% lower number of cells in the cerebellum relative to wild-type mice. Incubation of cerebellar neurons from Bcl-2 +/+ brains with 0.5 mM dopamine caused 25% cell death, whereas in Bcl-2-deficient cells, it resulted in 52% death; glial cells provided protection in both cultures. Splenocytes from Bcl-2-deficient mice were also killed more effectively by dopamine as well as paraquat. Bcl-2-deficient mice did not survive intraperitoneal injection of MPTP, which caused a decrease in dopamine level in the striatum of Bcl-2 +/− brains, which was more significant than in wild-type mice. When compared with Bcl-2 +/+ brains, brains of 8-day-old Bcl-2-deficient mice had higher activities of the antioxidant enzymes GSH reductase (192%) and GSH transferase (142%), whereas at the age of 30 days, GSH peroxidase was significantly lower (66%). Activities of GSH transferase and GSH reductase increased significantly (158 and 262%, respectively) from day 8 to day 30 in Bcl-2 +/+ mice, whereas GSH peroxidase decreased (31%) significantly in Bcl-2−/− animals. In summary, our results demonstrated enhanced oxidative stress and susceptibility to oxidants as well as altered levels of antioxidant enzymes in brains of Bcl-2-deficient mice. It is concluded that Bcl-2 affects cellular levels of ROS, which may be due to an effect either on their production or on antioxidant pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...