Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 833-846 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this study, a filtration-based perfusion process was developed for the production of monoclonal antibodies (IgM) by suspended hybridoma cells grown in protein-free medium. It was found that the use of protein-free medium for perfusion culture generated the formation of numerous visible suspended particles consisting of dead cells and cellular debris aggregated into fibrous material. Surprisingly high apparent viabilities were observed in such protein-free cultures. In addition, membrane fouling occurred more rapidly in protein-free medium than in conventional serum-supplemented medium. By the addition of deoxyribonuclease I (DNase I) to the protein-free medium, it was possible to prevent the formation of aggregates and to follow the evolution of the total cell population more accurately. Moreover, DNase I significantly reduced the fouling of filtration membranes, and that, for two different types of separation systems (cross-flow and vortex-flow filtration) and two different types of membranes (polycarbonate and hydrophilized polysultone). From these results, it is clear that the presence of DNA fragments liberated following cellular death is playing an important role in membrane fouling. Longevity of filtration membranes was found to be considerably greater using a vortex-flow filtration module than with a static plate-and-frame cross-flow filtration module. The use of vortex-flow filtration of conjuction with DNase I allowed maintenance of perfusion cultures for more than 1 month without membrane fouling or antibody retention and with a constant permeate IgM concentration of 250 mg/L. Hybridomacells appeared to gradually adapt to increasing rotational speed in the vortex-flow filtration module.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 1140-1154 
    ISSN: 0006-3592
    Keywords: ammonia ; apoptosis ; hybridoma ; lactate ; myeloma ; nutrient deprivation ; programmed cell death ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the present study, cell death was investigated in cultures of NS/0 myelomas and SP2/0-derived D5 hybridomas through morphological examination of cells stained with acridine orange and ethidium bromide. The relative contribution of elevated levels of lactic acid and ammonia, as well as deprivation of glutamine, cystine, and glucose on the induction of necrosis or apoptosis, was investigated. In batch culture of D5 hybridoma cells, induction of apoptotic cell death correlated with the exhaustion of glutamine, while in the case of NS/0 myelomas, it coincided with exhaustion of cystine. To determine whether limiting nutrients were the actual triggering factors for apoptosis in batch culture, exponentially growing cells were resuspended in glutamine or cystine-free media. Within 30 to 40 h, viability decreased to 50% and the nonviable cell population displayed typical apoptotic morphology, with crescents of condensed chromatin around the periphery of the nucleus, or with the entire nucleus present as one or a group of featureless, brightly staining spherical beads. Similarly, D5 hybridomas and NS/0 myelomas cultivated in glucose-free medium died mainly from apoptosis. Cells were also cultivated in fresh medium supplemented with elevated concentrations of ammonia (3.0 mM) and/or lactate (35 mM, 50 mM). This resulted in decreased viabilities and necrotic death in both cell lines. From these results, we conclude that D5 hybridomas and NS/0 myelomas deprived of essential nutrients die by apoptosis, whereas incubation in the presence of elevated levels of metabolic byproducts such as ammonia and lactate will induce necrotic cell death in these cells. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0778
    Keywords: apoptosis ; cell cycle ; E1B-19K ; hydroxyurea ; hyperosmosis ; hypertonic ; monoclonal antibodies ; OptiMAbTM ; thymidine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Lymphoid cells expressing sufficient levels of Bcl-2 or E1B-19K are known to resist to induction of apoptosis in glutamine-free or nutrient-limited batch cultures. However, despite the increased viability and prolonged stationary phase achieved in batch culture, product yields are not necessarily improved. Here we have found that expression of E1B-19K in NS/0 myeloma cells cultivated in the presence of certain cell cycle modulators could result in a significant increase in MAb productivity as compared to untransfected control cells. The use of E1B-19K significantly enhanced cell survival in the presence of osmolytes (sorbitol, NaCl), DNA synthesis inhibitors (hydroxyurea, excess thymidine), and the cell culture additive OptiMAb™. E1B-19K myelomas cultivated in the presence of NaCl or OptiMAb™ accumulated in the G1 phase, while those arrested with excess thymidine were blocked in all phases. Interestingly, control NS/0 cells treated with these agents were found to die in a cell-cycle specific manner. Thus, while all G1 and most S phase cells quickly underwent apoptosis, G2/M cells remained alive and maintained MAb secretion for more than 10 days if supplied with adequate nutrients. For both control and E1B-19K cells, incubation with sorbitol or hydroxyurea was detrimental for MAb secretion, while addition of NaCl, excess thymidine and OptiMAb™ resulted in an increased specific MAb productivity as compared to the batch culture. However, this increase resulted in an improvement of final MAb yields only in the case of OptiMAb™. The extension of viability conferred by E1B-19K allowed to further improve the final MAb yield obtained using OptiMAb™ with a 3.3-fold increase for E1B-19K cells as compared to 1.8-fold for control NS/0 cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 15 (1994), S. 117-128 
    ISSN: 1573-0778
    Keywords: Animal cell culture ; anoxia ; apoptosis ; cell death ; hybridoma ; hypoxia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract It is now well documented that apoptosis represents the prevalent mode of cell death in hybridoma cultures. Apoptotic or programmed cell death occurs spontaneously in late exponential phase of batch cultures. Until lately, no specific triggering factors had been identified. Recently, we observed that glutamine, cystine or glucose deprivation induced apoptosis in both hybridoma and myeloma cell lines whereas accumulation of toxic metabolites induced necrotic cell death in these cells. Other triggering factors such as oxygen deprivation might also be responsible for induction of apoptosis. In the present study, induction of cell death by exposure to anoxia was examined in batch culture of the SP2/0-derived hybridoma D5 clone. The mode of cell death was studied by morphological examination of acridine orange-ethidium bromide stained cells in a 1.5 L bioreactor culture grown under anoxic conditions for 75 hours. Under such conditions, viable cell density levelled off rapidly and remained constant for 25 hours. After 45 hours of anoxia, cell viability had decreased to 30% and the dead cell population was found to be 90% apoptotic. In terms of cellular metabolism, anoxia resulted in an increase in the utilization rates of glucose and arginine, and in a decrease in the utilization rate of glutamine. The lactate production rate and the yield of lactate on glucose increased significantly while the MAb production rate decreased. These results demonstrate that glycolysis becomes the main source of energy under anoxic conditions. Cells incubated for 10 hours or less under anoxic conditions were able to recuperate almost immediately and displayed normal growth rates when reincubated in oxic conditions whereas cells incubated for 22 hours or more displayed reduced growth rates. Nonetheless, even after 22 h or 29 h of anoxia, cells reincubated in oxic conditions showed no further progression into apoptosis. Therefore, upon removal of the triggering signal, induction of apoptosis ceased.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...