Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 58 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Taz is a chimeric receptor consisting of the periplasmic, transmembrane and most of the HAMP linker domains of the Escherichia coli aspartate receptor (TarEc) and the cytoplasmic signalling domain of the E. coli osmosensor EnvZ. Aspartate is one of several attractant ligands normally sensed by Tar and it interacts with Taz to induce OmpR-dependent transcription from the ompC promoter – albeit with reduced sensitivity relative to the chemotactic response it evokes via Tar. By combining Taz with a reporter system that expresses green fluorescent protein (GFP) from the ompC promoter, we were able to examine the interaction of Taz with all 20 natural amino acids. Some amino acids (Leu, Met, Val and Ser) reduced GFP expression, which in the case of leucine is likely attributed to a direct effect on the receptor, rather than an indirect effect through the leucine responsive protein (Lrp). Surprisingly, amino acids like Met and Ser – which are also attractants for Tar –‘inhibited’ Taz. Moreover, Taz exhibits a higher sensitivity to Leu compared with Asp, which is the inverse of Tar. Our results show the exquisite sensitivity of chemotactic receptors. Small conformational changes induced by making the chimera may have changed the way it responds to different amino acids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 443 (2006), S. 527-533 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The massive acquisition of data in molecular and cellular biology has led to the renaissance of an old topic: simulations of biological systems. Simulations, increasingly paired with experiments, are being successfully and routinely used by computational biologists to understand and predict the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...