Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A period of hypersensitivity to N-methyl-d-aspartate (NMDA) has been described during the early development of different types of neuron. Since activation of NMDA receptors can also induce rapid neuron death, the hypersensitivity to NMDA may be tightly controlled. In the present study we show that mouse cerebellar granule neurons become transiently hypersensitive to NMDA between days 10 and 14 after plating in a culture medium containing 30 mM K+. The NMDA sensitivity is higher when cells are cultured in the presence of an NMDA receptor antagonist [30 mM K+ plus 100 μM 3-((±)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP)], and no hypersensitivity is observed when cells are cultured in the continuous presence of NMDA (12.5 mM K+ plus 100 μM NMDA). The high NMDA sensitivity in control cells is associated with a higher density of NMDA receptors than that measured in NMDA-treated cells, suggesting that the sensitivity to NMDA may be partly controlled by activity-dependent NMDA receptor down-regulation. We also examined the level of NMDA-ζ1 mRNA and found no correlation between this parameter and the transient pattern of NMDA sensitivity. Such NMDA receptor plasticity may be of importance in the central nervous system, protecting developing cells from excitotoxicity at critical developmental stages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In view of the potential impact of pituicyte morphology on neurohypophysial hormone secretion, we have studied the mechanisms involved in the shape changes induced by vasopressin (AVP) and oxytocin (OXT) in cultured rat pituicytes. Pituicytes induced to become stellate in the presence of 10 µm adenosine revert to their nonstellate shape ∼20 min after application of AVP or OXT. The IC50 for this effect is 0.1 nm for AVP and 36 nm for OXT. Both agonists induce Ca2+ signals in pituicytes, comprised of a transient peak and a plateau phase that is dependent on the presence of extracellular Ca2+. The EC50 values of AVP for the transient and sustained responses are 4.5 and 0.1 nm, respectively; corresponding values for OXT are 180 and 107 nm. We determined pharmacologically that these hormone-induced Ca2+ signals are mediated by the V1a subtype of vasopressin receptors, similar to what we previously observed for hormone-induced reversal of stellation. Removal of extracellular Ca2+ or chelation of intracellular Ca2+ partially prevented AVP from reversing stellation, suggesting a role for Ca2+ in this event. We previously established that adenosine-induced stellation of pituicytes occurs via RhoA inhibition. However, pharmacological experiments and pull-down assays presented here show that AVP-induced reversal of stellation does not involve RhoA activation. Rather, AVP was found to induce a time-dependent activation of Cdc42, another small GTPase involved in cytoskeletal plasticity. Activation of Cdc42 by AVP is sensitive to intra- and extracellular Ca2+ depletion, similar to AVP-induced reversal of stellation. Furthermore, AVP-induced reversal of stellation is blocked by expression of an NWASP fragment known to inhibit endogenous Cdc42.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 431 (1996), S. 763-770 
    ISSN: 1432-2013
    Keywords: Large-conductance ; Ca-activated K channels ; Single-channel recording ; Development ; Telencephalon ; Neuroepithelium ; Proteolytic modifications ; Trypsin ; Charybdotoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The pharmacological and biophysical properties of large-conductance Ca-activated K (BK) channels from embryonic rat telencephalic neuroepithelium were investigated with in situ patch-clamp techniques. A fraction of these channels exhibited properties characteristic of BK channels recorded in well differentiated cells, including normal gating mode (BKN channels). The vast majority of BK channels expressed distinctive properties, the most conspicuous being their buzz gating mode (BKB channels). BKB channels were insensitive to a concentration of charybdotoxin that completely and reversibly blocked BKN channels. In contrast with the strict dependence of BKN channel activation on cytoplasmic Ca, BKB channels displayed substantially high open probability (P o) after inside-out patch excision in a Ca-free medium. Intracellular trypsin down-regulated theP o of BKB channels, which then exhibited a greater sensitivity to cytoplasmic Ca, mainly in the positive direction (increasedP o with increased Ca). This suggested a modulatory role for Ca as opposed to its gating role in BKN channels. Ca ions also reduced current amplitude of both types of channels. BKB channels were less voltage sensitive than BKN channels, but this was not correlated with their lower Ca sensitivity. We speculate that BKB channels may represent immature forms in the developmental expression of BK channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular neurobiology 12 (1992), S. 285-295 
    ISSN: 1573-6830
    Keywords: NCB-20 ; calcium currents ; Bay K 8644 ; patch clamp ; cellular differentiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. Calcium currents (I Ca) were studied in voltage-clamped NCB-20 cells. In undifferentiated cells, voltage steps from hyperpolarized potentials (-80/-100 mV) essentially revealed transientI Ca showing characteristics classically described for “T-type” channels. In about 50% of the cells, there was a residual current at the end of the step; noI Ca was elicited from a holding potential of-50 mV. 2. In contrast, 100% of the cells differentiated with dibutyryl cyclic AMP (cAMP) displayed a residual current in addition to the transient one, and depolarizing steps from a holding potential of -50 mV induced a sustained current. In these cells, Bay K 8644 elicited both a negative shift in voltage dependence and a moderate increase of the sustained component. 3. Although these changes in Ca2+ channel physiology result from chemically induced differentiation, they might not be directly related to the concomitant morphologic differentiation. 4. In undifferentiated NCB-20 cells, T-type Ca2+ currents can be elicited in relative isolation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...