Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 5 (1957), S. 116-122 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 45 (1985), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The kinetic constants for large neutral amino acid (LNAA) transport across the blood–brain barrier (BBB) of conscious rats were determined in four brain regions: cortex, caudate-putamen, hippocampus, and thalamus-hypothalamus. Indwelling external carotid artery catheters allowed for single-bolus (200 μ1) injections directly into the arterial system of unanesthetized and lightly restrained animals. Our results showed lower brain uptake index values for conscious rats compared to previous reports for anesthetized animals which are consistent with higher rates of cerebral blood flow in the conscious animals. Km values were lower in the conscious animals and ranged from 29% to 87% of the Km values in pentobarbital-anesthetized animals whereas the KD values were about twofold higher in the conscious animals. No apparent regional differences were observed. Influx rates were determined which take into consideration flow rates and plasma amino acid concentrations. Our results showed an average amino acid influx value of 5.2 nmol/min/g, which is 53% higher than the average influx in pentobarbital-anesthetized animals. The present results in conscious animals regarding the low Km of LNAA transport across the BBB lend further support to the importance of fluctuations in plasma amino acid concentrations and LNAA transport competitive effects on brain amino acid availability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 30 (1978), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Aminooxyacetic acid (AOAA) administration produced an increase in γ-aminobutyric acid (GABA) levels in regions of cerebral cortex, subcortex and cerebellum. In some cortical areas studied, the maximal effect was observed with 25 mg/kg AOAA; in other regions GABA levels were increased further with 50 and 75 mg/kg AOAA. Pretreatment with 25 mg/kg AOAA effectively inhibited GABA:2-oxoglutarate aminotransferase (GABA-T) and partially inhibited glutamic acid decarboxylase (GAD) activity in regions of cerebral cortex. However, this dose did not affect GAD activity in substantia nigra while GABA-T in the nigra and in the cerebellum was only partially inhibited. In both cortical and subcortical areas, the increase in GABA produced by 25 mg/kg of AOAA was linear. In contrast, l-glutamic acid-hydrazide (GAH) had no effect in the pyriform and cingulate cortex for the first 60 min after injection, and produced a biphasic GABA increase in caudate and substantia nigra over a 4 h period. Results suggest that GAH and AOAA affect regional GABA metabolism differentially and that there are several problems associated with estimating absolute GABA synthesis rates by measuring the rate or GABA accumulation after inhibition of GABA catabolism with these agents. This approach, however, may provide an easily obtainable indication of whether drugs or other manipulations are altering GABA synthesis in a given region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 30 (1978), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The association between glutamate decarboxylase (GAD) and its cofactor, pyridoxal-5′-phos-phate (pyridoxal-P), was studied using 20,0000 supernatant of rat brain. In this preparation GAD required added pyridoxal-P to maintain a linear reaction rate beyond 5 min of incubation. Following exhaustive dialysis the enzyme was more than 83% saturated with cofactor indicating that the cofactor was tightly bound to the enzyme. When incubations were performed in the presence of glutamate and without added pyridoxal-P there was a progressive inactivation of the enzyme which was dependent on the glutamate concentration. This lost activity was almost completely recovered by addition of pyridoxal-P to the dialyzed glutamate-inactivated enzyme. The results suggest that glutamate inactivates GAD by promoting the dissociation of pyridoxal-P from the enzyme thereby producing inactive apoen-zyme which can be reactivated by combining with available pyridoxal-P. This interpretation is supported by the finding that progress curves for the reaction were accurately described over a 30 min incubation period and 10-fold glutamate concentration range by an integrated rate equation which takes the glutamate-promoted dissociation of cofactor into account. The progressive inactivation could not be attributed to denaturation of the enzyme, impurities in the substrate, effects of pH, depletion of substrate, protein concentration, sulfhydryl reagents or product inhibition. The results presented here also show that certain precautions must be adopted to accurately measure GAD activity in the absence of added pyridoxal-P as has been widely done in studies of drug action. Specifically, measurements must be made at short times of incubation and low concentrations of glutamate to minimize the glutamate-promoted inactivation of the enzyme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The effects of adenine nucleotides and glutamate on glutamate decarboxylase were studied in a dialyzed, high-speed supernatant of rat brain. When incubated with 10 μm-pyridoxal-P the enzyme was strongly inhibited by ATP, ADP and their Mg2+ complexes at concentrations which were well below tissue levels. The enzyme was not significantly inhibited by 15 mm-AMP or by 100 μM-3′-5’cyclic AMP or 3′-5’cyclic GMP. Inhibition by the nucleotides cannot be described in conventional steady-state kinetic terms. Addition of ATP in the presence of pyridoxal-P resulted in a slow, progressive decrease in the reaction rate which was similar to the inactivation observed when the enzyme was incubated in the absence of pyridoxal-P. The progressive inactivation in the presence of ATP was minimal at concentrations of glutamate which were well below Km and became much more pronounced at higher glutamate concentrations. Addition of suprasaturating amounts of pyridoxal-P late in the incubation when the enzyme was almost completely inactivated resulted in an immediate and complete reactivation of the enzyme. Inhibition by ATP could be prevented by addition of saturating amounts of pyridoxal-P at the start of the reaction and was also relieved by addition of potassium phosphate buffer. The results suggest that inhibition by the nucleotides involves the prior formation of the inactive apoenzyme which results from the glutamate-promoted dissociation of pyridoxal-P. In the absence of the nucleotides, the enzyme is normally reactivated by the added pyridoxal-P. The nucleotides act to block this reassociation of pyridoxal-P with the apoenzyme thereby producing a progressive inactivation of the enzyme. The implications of these results for the regulation of GABA synthesis are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The percentage saturation of GAD by pyridoxal-P is defined here as the activity of GAD measured in the absence of added pyridoxal-P as a percentage of the activity measured in the presence of saturating levels of the cofactor (100 µM). This approach is possible because the cofactor is tightly ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-6903
    Keywords: Rat brain ; glycolysis regulation ; pentobarbital
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the present investigation we monitored the incorporation of [14C] from [U-14C]glucose into various rat brain glycolytic intermediates of conscious and pentobarbital-anesthetized animals. Labeled glucose was delivered to brain by single bolus intracarotid injection and brain tissue was subsequently prepared at 15, 30 and 45 sec by freeze-blowing. Glycolytic intermediates were then separated by column chromatography. Our results showed a gradual decrease with time of14C-labeled glucose which gave a calculated rate for glucose metabolism of 0.86 μmol/min/g and 0.56 μmol/min/g in conscious and anesthetized animals, respectively. Compared to the results obtained using conscious animals the administration of pentobarbital not only resulted in a significant attenuation of the rate of glucose metabolism but also caused a similar reduction in the amount of14C incorporated into several glycolytic intermediates. These intermediates included: glucose 6-phosphate, fructose 6-phosphate, fructose, 1,6 diphosphate, dihydroxyacetone phosphate and post glycolytic compounds. In addition, pretreatment with pentobarbital resulted in a 75% increase in the endogenous concentration of glucose, 10% increase in glucose 6-phosphate, no change in fructose 6-phosphate and 42% decrease in lactate compared to levels in brains obtained from conscious animals. These results are discussed in relation to control of glycolysis through coupled regulation at hexokinase-phosphofructokinase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...