Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 22 (1993), S. 323-328 
    ISSN: 1432-1017
    Keywords: Lipid bilayer ; Binary mixture ; Lipidprotein interaction ; Lipid selectivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract A model recently used to study lipid-protein interactions in one-component lipid bilayers (Sperotto and Mouritsen, 1991 a, b) has been extended in order to include two different lipid species characterized by different acyl-chain lengths. The model, which is a statistical mechanical lattice model, assumes that hydrophobic matching between lipid-bilayer hydrophobic thickness and hydrophobic length of the integral protein is an important aspect of the interactions. By means of Monte Carlo simulation techniques, the lateral distribution of the two lipid species near the hydrophobic protein-lipid interface in the fluid phase of the bilayer has been derived. The results indicate that there is a very structured and heterogeneous distribution of the two lipid species near the protein and that the protein-lipid interface is enriched in one of the lipid species. Out of equilibrium, the concentration profiles of the two lipid species away from the protein interface are found to develop a long-range oscillatory behavior. Such dynamic membrane heterogeneity may be of relevance for determining the physical factors involved in lipid specificity of protein function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 19 (1991), S. 157-168 
    ISSN: 1432-1017
    Keywords: Lipid-protein interactions ; Phase transition ; Lipid bilayer ; Hydropobic thickness ; Protein aggregation ; Monte Carlo simulation ; Mean-field theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Monte Carlo simulations and mean-field calculations have been applied to a statistical mechanical lattice model of lipid-protein interactions in membranes in order to investigate the phase equilibria as well as the state of aggregation of small integral membrane proteins in dipalmitoyl phosphatidylcholine bilayers. The model, which provides a detailed description of the pure lipid bilayer phase transition, incorporates hydrophobic matching between the lipid and protein hydrophobic thicknesses as a major contribution to the lipid-protein interactions. The model is analyzed in the regime of low protein concentration. It is found that a large mismatch between the lipid and protein hydrophobic thicknesses does not guarantee protein aggregation even though it strongly affects the phase behaviour. This result is consistent with experimental work (Lewis and Engelman 1983) considering the effect of lipid acyl-chain length on the planar organization of bacteriorhodopsin in fluid phospholipid bilayers. The model calculations predict that the lipid-mediated formation of protein aggregates in the membrane plane is mainly controlled by the strength of the direct lipid-protein hydrophobic attractive interaction but that direct protein-protein interactions are needed to induce substantial aggregation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 87 (1987), S. 6706-6709 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 1855-1865 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A theoretical study is performed on a microscopic interaction model which describes the transitions between liquid and solid phases of lipid monolayers spread on air/water interfaces. The model accounts for condensation in terms of acyl-chain conformational degrees of freedom as well as in terms of variables which describe the orientations of crystalline domains in the solid. The phase behavior of the model as a function of temperature and lateral pressure is explored using mean-field theory and computer-simulation techniques. Attention is paid to the particular interplay between the two types of condensation processes and effects on the phase behavior due to decoupling of crystalline and conformational order parameters. In the case of decoupling, the model predicts that the high-pressure solid-conformationally ordered phase is separated from the low-pressure liquid-conformationally disordered phase by a liquid-conformationally ordered phase. This prediction is consistent with synchrotron x-ray experiments which show that the chain-ordering transition and the crystallization process need not take place at the same lateral pressure. A characterization is provided of the nonequilibrium effects and pattern-formation processes observed along the isotherms in the phase diagram spanned by lateral pressure and area. A description is given of the kinetics of the nonequilibrium phase transitions and the concomitant heterogeneous microstructure of the monolayer. This leads to an explanation of the peculiarities of the experimentally observed isotherms of lipid monolayer phase behavior. It is pointed out that cholesterol, which promotes lipid-chain conformational order, has a unique capacity of acting as a ‘crystal breaker' in the solid monolayer phases and therefore provides a molecular mechanism for decoupling crystalline and conformational order in lipid monolayers containing cholesterol. The phase diagram of mixed cholesterol–lipid monolayers is derived and discussed in relation to monolayer experiments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 625 (1991), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 404 (2000), S. 352-352 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] When a system approaches a critical point, strong fluctuations develop on every scale, from molecules to the entire system. Here we show that critical fluctuations in the domains in a lipid monolayer can be captured and measured by immobilizing it on a solid support and visualizing the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 3643-3656 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The fundamental problem of determining the phase equilibria of binary mixtures is discussed in the context of two-component phospholipid bilayer membranes of saturated phospholipids with different acyl-chain lengths. Results are presented from mean-field calculations and Monte Carlo simulations on a statistical mechanical model in which the interaction between lipid acyl chains of different length is formulated in terms of a hydrophobic mismatch. The model permits a series of binary phase diagrams to be determined in terms of a single "universal'' interaction parameter. The part of the free energy necessary to derive phase equilibria is determined from the simulations using distribution functions and histogram techniques, and the nature of the phase equilibria is determined by a finite-size scaling analysis which also permits the interfacial tension to be derived. Results are also presented for the enthalpy and the compositional fluctuations. It is shown, in accordance with experiments, that the nonideal mixing of lipid species due to mismatch in the hydrophobic lengths leads to a progressively nonideal mixing behavior as the chain-length difference is increased. Moreover, indications are found that a phase transition in a strict thermodynamic sense may be absent in some of the short-chain one-component lipid bilayers, but a transition can be induced when small amounts of another species are mixed in, leading to a closed phase separation loop with critical points. The physical mechanism of inducing the transition is discussed in terms of the molecular properties of the lipid acyl chains. The results of the numerical model study are expected to have consequences for the interpretation of experimental measurements on lipid bilayer systems in terms of phase diagrams. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 491 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The relation between superconductivity and oxygen ordering in YBa2Cu3O6+x is manifested most strongly experimentally in the variation of Tc with time as the oxygen ordering develops2'3, and in the variation of Tc with x, which exhibits pronounced 'plateaus' at 58 K and 93 K (refs 4-7). Cava et ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 15 (1998), S. 1507-1519 
    ISSN: 1573-904X
    Keywords: lipid bilayer ; molecular organization ; phase transitions ; permeability ; lipid-protein interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design of new drugs and drug-delivery systems therefore requires insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental and theoretical studies. Special attention is paid to trans-bilayer structure, lateral molecular organization of the lipid bilayer, lipid-mediated protein assembly, and lipid-bilayer permeability. It is argued that lipids play a major role in lipid membrane-organization and functionality.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...