Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 21 (1982), S. 1445-1453 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 103 (1981), S. 1860-1862 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Yeast ; Mitochondrial ; Mutants ; RNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This is a description of a new class of temperature sensitive pet mutants in Saccharomyces cereviase that lose all or part of their mitochondrial RNA at the restrictive temperature. These mutants fall into 8 different complementation groups, mna1 to mna8, and 2 different classes based on their phenotype. Class I mutations, mna1-1 through mna5-1, cause complete or partial loss of mitochondrial RNA at the restrictive temperature. The mutation, mna1-1, is especially interesting since it causes a loss of both mitochondrial DNA and RNA when the mutant is grown on a fermentable carbon source at the restrictive temperature. However, when this mutant is grown at the permissive temperature on a non-fermentable carbon source then shifted to the restrictive temperature, only the mitochondrial RNA is lost. This indicates that the primary cause for the pet phenotype is due to the loss of mitochondrial RNA and not DNA. Class II mutations, mna6-1 through man8-1, cause complete loss of the 14S rRNA after growth at the restrictive temperature in a fermentable carbon source. This loss appears to be specific for the 14S rRNA, since all other transcripts probed by Northern analysis are normal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 31 (1999), S. 95-104 
    ISSN: 1573-6881
    Keywords: F1-ATPase ; β-barrel domain ; mitochondria ; assembly ; yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The crystal structure of mitochondrial F1-ATPase indicatesthat the α and β subunits fold into a structure defined by threedomains: the top β-barrel domain, the middle nucleotide-binding domain,and the C-terminal α-helix bundle domain (Abraham et al.1994); Bianchet et al., 1998). The β-barrel domains of theα and β subunits form a crown structure at the top ofF1, which was suggested to stabilize it (Abraham et al.1994). In this study. the role of the β-barrel domain in the α andβ subunits of the yeast Saccharomyces cerevisiae F1,with regard to its folding and assembly, was investigated. The β-barreldomains of yeast F1 α and β subunits were expressedindividually and together in Escherichia coli. When expressedseperately, the β-barrel domain of the β subunit formed a largeaggregate structure, while the domain of the α subunit waspredominately a monomer or dimer. However, coexpression of the β-barreldomain of α subunit domain. Furthermore, the two domains copurified incomplexes with the major portion of the complex found in a small molecularweight form. These results indicate that the β-barrel domain of theα and β subunits interact specifically with each other and thatthese interactions prevent the aggregation of the β-barrel domain of theβ subunit. These results mimic in vivo results and suggest thatthe interactions of the β-barrel domains may be critical during thefolding and assembly of F1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 32 (2000), S. 391-400 
    ISSN: 1573-6881
    Keywords: ATP synthase ; F1-ATPase ; Saccharomyces cerevisiae ; petite mutants ; epistasis ; mitochondrion ; pet mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The mitochondrial ATP synthase is a molecular motor that drives the phosphorylation ofADP to ATP. The yeast mitochondrial ATP synthase is composed of at least 19 differentpeptides, which comprise the F1 catalytic domain, the F0 proton pore, and two stalks, oneof which is thought to act as a stator to link and hold F1 to F0, and the other as a rotor.Genetic studies using yeast Saccharomyces cerevisiae have suggested the hypothesis thatthe yeast mitochondrial ATP synthase can be assembled in the absence of 1, and even 2, ofthe polypeptides that are thought to comprise the rotor. However, the enzyme complexassembled in the absence of the rotor is thought to be uncoupled, allowing protons to freelyflow through F0 into the mitochondrial matrix. Left uncontrolled, this is a lethal process andthe cell must eliminate this leak if it is to survive. In yeast, the cell is thought to lose ordelete its mitochondrial DNA (the petite mutation) thereby eliminating the genes encodingessential components of F0. Recent biochemical studies in yeast, and prior studies in E. coli,have provided support for the assembly of a partial ATP synthase in which the ATP synthaseis no longer coupled to proton translocation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...