Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Key words Dormancy ; Resuscitation ; Latency ; Anabiosis ; Growth factor ; Lag phase ; Cell ; multiplication ; Micrococcus luteus ; Mycobacterium ; tuberculosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Viable cells of Micrococcus luteus secrete a proteineous growth factor (Rpf) which promotes the resuscitation of dormant, nongrowing cells to yield normal, colony-forming bacteria. When washed M. luteus cells were used as an inoculum, there was a pronounced influence of Rpf on the true lag phase and cell growth on lactate minimal medium. In the absence of Rpf, there was no increase in colony-forming units for up to 10 days. When the inoculum contained less than 105 cells ml–1, macroscopically observable M. luteus growth was not obtained in succinate minimal medium unless Rpf was added. Incubation of M. luteus in the stationary phase for 100 h resulted in a failure of the cells to grow in lactate minimal medium from inocula of small size although the viability of these cells was close to 100% as estimated using agar plates made from lactate minimal medium or rich medium. The underestimation of viable cells by the most-probable-number (MPN) method in comparsion with colony-forming units was equivalent to the requirement that at least 105 cells grown on succinate medium, 103 cells from old stationary phase, or approximately 10–500 washed cells are required per millilitre of inoculum for growth to lead to visible turbidity. The addition of Rpf in the MPN dilutions led to an increase of the viable cell numbers estimated to approximately the same levels as those determined by colony-forming units. Thus, a basic principle of microbiology –“one cell-one culture”– may not be applicable in some circumstances in which the metabolic activity of “starter” cells is not sufficient to produce enough autocrine growth factor to support cell multiplication.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Micrococcus luteus starved for 2–7 months in spent medium following growth to stationary phase in batch culture exhibited a culturability (as estimated by direct plating on nutrient agar plates) of 〈 0.001%. However, following a lag, some 70% of the cells could be lysed upon inoculation into and cultivation in fresh lactate minimal medium containing penicillin, showing the capability of a significant portion of the cells at least to enlarge (and thus potentially to resuscitate). When the viable cell count was estimated using the most probable number method, by incubation of high dilutions of starved cells in liquid growth media, the number of culturable or resuscitable cells was very low, and little different from the viable cell count as assessed by plating on solid media. However, the apparent viability of these populations evidenced with the most probable number method was 1000–100 000-fold greater when samples were diluted into liquid media containing supernatants taken from the stationary phase of batch cultures of the organism, suggesting that viable cells can produce a factor which stimulates the resuscitation of dormant cells. Both approaches show, under conditions in which the growth of a limited number of viable cells during resuscitation is excluded, that a significant portion of the apparently non-viable cell population in an extended stationary phase is dormant, and not dead.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-695X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Very little is known about the culturability and viability of mycobacteria following their phagocytosis by macrophages. We therefore studied populations of the avirulent ‘Academia’ strain of Mycobacterium tuberculosis isolated from murine peritoneal macrophage lysates several days post-infection in vivo. The resulting bacterial suspensions contained a range of morphological types including rods, ovoid forms and coccoid forms. Bacterial viability measured using the MPN method (dilution to extinction in liquid medium) was often much higher than that measured by CFU (plating on solid medium). Viability in the MPN assay was further enhanced when the Micrococcus luteus protein, Rpf, was incorporated into the liquid culture medium at picomolar concentrations. Rpf is an example of a family of autocrine growth factors found throughout the high G+C cohort of Gram-positive bacteria including M. tuberculosis. M. tuberculosis cells obtained from macrophages had altered surface properties, as compared with bacteria grown in vitro. This was indicated by loss of the ability to adsorb bacteriophage DS6A, a reduced tendency to form clumps, acquisition of ethidium bromide stainability following heat treatment, and loss of Rpf-mediated resuscitation following freezing and thawing. These results indicate that a proportion of ‘unculturable’M. tuberculosis cells obtained from macrophages is either injured or dormant and that these cells may be recovered or resuscitated using Rpf in liquid medium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Mycobacterium tuberculosis and its close relative, Mycobacterium bovis (BCG) contain five genes whose predicted products resemble Rpf from Micrococcus luteus. Rpf is a secreted growth factor, active at picomolar concentrations, which is required for the growth of vegetative cells in minimal media at very low inoculum densities, as well as the resuscitation of dormant cells. We show here that the five cognate proteins from M. tuberculosis have very similar characteristics and properties to those of Rpf. They too stimulate bacterial growth at picomolar (and in some cases, subpicomolar) concentrations. Several lines of evidence indicate that they exert their activity from an extra-cytoplasmic location, suggesting that they are also involved in intercellular signalling. The five M. tuberculosis proteins show cross-species activity against M. luteus, Mycobacterium smegmatis and M. bovis (BCG). Actively growing cells of M. bovis (BCG) do not respond to these proteins, whereas bacteria exposed to a prolonged stationary phase do. Affinity-purified antibodies inhibit bacterial growth in vitro, suggesting that sequestration of these proteins at the cell surface might provide a means to limit or even prevent bacterial multiplication in vivo. The Rpf family of bacterial growth factors may therefore provide novel opportunities for preventing and controlling mycobacterial infections.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Micrococcus luteus secretes a small protein called Rpf, which has autocrine and paracrine signalling functions and is required for the resuscitation of dormant cells. Originally isolated from the supernatant of actively growing cultures, Rpf was also detected on the surface of actively growing bacteria. Most molecules may be sequestered non-productively at the cell surface, as a truncated form of the protein, encompassing only the ‘Rpf domain’ is fully active. The C-terminal LysM module, which probably mediates binding to the cell envelope, is not required for biological activity. Rpf was essential for growth of M. luteus. Washed cells, inoculated at low density into a minimal medium, could not grow in its absence. Moreover, the incorporation of anti-Rpf antibodies into the culture medium at the time of inoculation also prevented bacterial growth. We were unable to inactivate rpf using a disrupted form of the gene, in which most of the coding sequence was replaced with a selectable thiostrepton resistance marker. Gene disruption was possible in the presence of a second, functional, plasmid-located copy of rpf, but not in the presence of a rpf derivative whose protein product lacked the secretory signal sequence. As far as we are aware, Rpf is the first example of a truly secreted protein that is essential for bacterial growth. If the Rpf-like proteins elaborated by Mycobacterium tuberculosis and other mycobacteria prove similarly essential, interference with their proper functioning may offer novel opportunities for protecting against, and treating, tuberculosis and other mycobacterial disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-9699
    Keywords: antibacterial factor ; dormancy ; Micrococcus luteus ; resuscitation ; stationary phase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A high proportion ofMicrococcus luteus cells in cultures starved for 3–6 months in spent medium following growth to stationary phase in batch culture lost the ability to grow and form colonies on agar plates, but could be resuscitated from dormancy by incubation in liquid medium containing supernatant taken from the late log phase of viable cultures of the same organism (Kaprelyants et al. 1994). In the present work, we found that during the first 50–70 h of such resuscitation the dormant cells actually divide for 10–17 generations in lactate minimal medium containing yeast extract whilst remaining nonculturable on agar plates. Further incubation results in a decrease in the total cell number in liquid medium. The addition of viable (culturable)Micrococcus luteus cells in concentrations of up to 104 ml−1 to test tubes containing either resuscitating cells or supernatant from these cultures revealed the excretion of a factor or factors which inhibited the proliferation of otherwise viable cells. The maximum production of this factor took place after some 96 h of incubation of starved cells in resuscitation medium. Supernatant from late logarithmic phase batch cultures ofM. luteus abolished the antibacterial effect of starved cultures incubated in resuscitation medium. It is concluded that the stimulating effect of viable cells, and of supernatant taken from batch cultures, on the resuscitation of dormant cells might be connected in part with overcoming the activity of an antibacterial factor causing self-poisoning of dormant cells during their resuscitation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9699
    Keywords: dormancy ; resuscitation ; cryptobiosis ; anabiosis ; M. luteus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract It has been found previously that a significant number of Micrococcus luteus cells starved in a prolonged stationary phase (up to 2 months) and then held on the bench at room temperature without agitation for periods of up to a further 2–7 months can be resuscitated in liquid media which contained (statistically) no initially-viable (colony-forming) cells but which were fortified with sterile supernatant from the late logarithmic phase of batch growth. Here it was found that such resuscitation can be done only within a defined time period after taking the first sample from such cultures, necessarily involving agitation of the cells. The duration of this period depends on the age of the starved culture: cells kept on the bench for 3 months possess a 2 month period of resuscitability while cells starved for 6 months can be resuscitated only within 10 days after the beginning of sampling. It is suggested that the input of oxygen to the starved cultures while they are agitated may exert a negative influence on the cells, since cultures stored in anaerobic conditions (under nitrogen) had a more prolonged ’survival' time. The cells which experienced between 10 and 60 days of starvation on the bench could be resuscitated, although the number of resuscitable cells depended strongly on the concentration of yeast extract in the resuscitation medium. This concentration for cells stored on the bench for more than 2 months was 0.05% while ’1-month-old‘ cells displayed a maximum resuscitability in the presence of 0.01% of yeast extract. Application of the fluorescent probe propidium iodide revealed the formation of cells with a damaged permeability barrier if resuscitation was performed by using concentrations of yeast extract of 0.1% and above. Thus the successful resuscitation of bacterial cultures under laboratory conditions may need rather strictly defined parameters if it is to be successfully performed for the majority of cells in a population.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...