Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Chorea-acanthocytosis (CHAC) is a hereditary neurodegenerative disorder with autosomal recessive transmission, in which selective degeneration of striatum has been reported in brain pathology. Clinically, CHAC shows Huntington's disease-like neuropsychiatric symptoms and red blood cell acanthocytosis. Recently, we identified the gene, CHAC, encoding a novel protein, chorein, in which a deletion mutation was found in Japanese families with CHAC. In the present study, we have identified the mouse CHAC cDNA sequence and the exon–intron structures of the gene and produced a CHAC model mouse introducing no. 60–61 exon deletion corresponding to a human disease mutation by a gene-targeting technique. The mice began to show acanthocytosis and motor disturbance in old age. In behavioral observations, locomotor activity was significantly decreased and the contact time at social interaction test was decreased significantly in the model mice. In the brain pathology, many apoptotic cells were observed in the striatum of the mutant mice. In neurochemical determinations, the dopamine metabolite, homovanillic acid, concentration decreased significantly in the portion including the midbrain of the mutant mice. These findings are consistent with the human results reported elsewhere and indicate that the CHAC model mice showed a mild phenotype with late adult onset. The CHAC model mouse therefore provides a good model system to study the human disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Orexin-A and -B (hypocretin-1 and -2) have been implicated in the stimulation of feeding. Here we show the effector neurons and signaling mechanisms for the orexigenic action of orexins in rats. Immunohistochemical methods showed that orexin axon terminals contact with neuropeptide Y (NPY)- and proopiomelanocortin (POMC)-positive neurons in the arcuate nucleus (ARC) of the rats. Microinjection of orexins into the ARC markedly increased food intake. Orexins increased cytosolic Ca2+ concentration ([Ca2+]i) in the isolated neurons from the ARC, which were subsequently shown to be immunoreactive for NPY. The increases in [Ca2+]i were inhibited by blockers of phospholipase C (PLC), protein kinase C (PKC) and Ca2+ uptake into endoplasmic reticulum. The stimulation of food intake and increases in [Ca2+]i in NPY neurons were greater with orexin-A than with orexin-B, indicative of involvement of the orexin-1 receptor (OX1R). In contrast, orexin-A and -B equipotently attenuated [Ca2+]i oscillations and decreased [Ca2+]i levels in POMC-containing neurons. These effects were counteracted by pertussis toxin, suggesting involvement of the orexin-2 receptor and Gi/Go subtypes of GTP-binding proteins. Orexins also decreased [Ca2+]i levels in glucose-responsive neurons in the ventromedial hypothalamus (VMH), a satiety center. Leptin exerted opposite effects on these three classes of neurons. These results demonstrate that orexins directly regulate NPY, POMC and glucose-responsive neurons in the ARC and VMH, in a manner reciprocal to leptin. Orexin-A evokes Ca2+ signaling in NPY neurons via OX1R–PLC–PKC and IP3 pathways. These neural pathways and intracellular signaling mechanisms may play key roles in the orexigenic action of orexins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...