Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 18 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Erythropoietin (Epo) has been shown to have potent anti-apoptotic activity in central nervous system neurons in animal models of ischaemic injury. Recently, Epo and its receptor (EpoR) have been identified in the peripheral nervous system [Campana & Myers (2001), FASEB J., 15, 1804–1806]. Herein, we demonstrate that in painful neuropathy caused by L5 spinal nerve crush (SNC), therapy with recombinant human Epo (rhEpo) reduced dorsal root ganglion (DRG) apoptosis and pain behaviours. Quantification of both DRG neurons and satellite cells revealed that vehicle-treated, crush-injured DRGs had 35.5 ± 8.3% apoptotic neurons and 23.5 ± 2.36% satellite cells compared with 7.5 ± 6.3% apoptotic neurons and 6.4 ± 3.94% satellite cells in rhEpo-treated, crush-injured DRGs (P 〈 0.05). While rhEpo-treated animals were not initially protected from mechanical allodynia associated with L5 SNC, rhEpo did significantly improve recovery rates compared to vehicle-treated animals (P 〈 0.01). Systemic rhEpo therapy increased JAK2 phosphorylation, a key anti-apoptotic signalling molecule for Epo-induced neuroprotection, in DRGs after crush. Dual immunofluorescence demonstrated Epo-induced JAK2-p was associated with both neuronal and glial cells. JAK2-p was associated with NF200-positive large neurons and with smaller neurons. This population of small neurons did not colocalize with IB4, a marker of nonpeptidergic, glial derived growth factor-responsive neurons. The findings link anti-apoptosis activities of Epo/EpoR/JAK2 in DRG neurons capable of inducing protracted pain states with reductions in pain behaviours, and therefore support a role for Epo therapy in the treatment of neuropathic pain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 90 (1995), S. 478-485 
    ISSN: 1432-0533
    Keywords: Key words Chronic constriction injury ; Crush ; Dorsal horn ; Hyperalgesia ; Neurotransmitters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We tested the hypothesis that neurochemical changes in the spinal cord dorsal horn associated with neuropathic pain states differ from those seen in association with non-painful neuropathies. Immunohistochemistry was performed on spinal cord sections from rats with a chronic constriction injury (CCI), which develop hyperalgesia, and from animals with a nerve crush injury, which do not develop hyperalgesia or other signs of a painful syndrome. Immunohistochemistry was quantified by computer-assisted densitometry. Calcitonin gene-related peptide (CGRP) immunoreactivity and substance P (SP) immunoreactivity were decreased from 1 to 4 weeks after injury in CCI and from 2 to 6 weeks in crush. Gamma-aminobutyric acid immunoreactivity was unchanged in both conditions at all time points. Met-enkephalin (Met-enk) immunoreactivity was increased in CCI and unchanged in crush. Although SP and CGRP are involved in pain transmission, we conclude that their decrease in immunoreactivity is not specific for the CCI model, but rather a more general event in nerve de- and regeneration. The increase in immunoreactivity for the opioid peptide Met-enk, however, was only seen in the late phase of CCI, and may be specific for conditions associated with neuropathic pain and its resolution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 90 (1995), S. 478-485 
    ISSN: 1432-0533
    Keywords: Chronic constriction injury ; Crush ; Dorsal horn ; Hyperalgesia ; Neurotransmitters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We tested the hypothesis that neurochemical changes in the spinal cord dorsal horn associated with neuropathic pain states differ from those seen in association with non-painful neuropathies. Immunohistochemistry was performed on spinal cord sections from rats with a chronic constriction injury (CCI), which develop hyperalgesia, and from animals with a nerve crush injury, which do not develop hyperalgesia or other signs of a painful syndrome. Immunohistochemistry was quantified by computer-assisted densitometry. Calcitonin gene-related peptide (CGRP) immunoreactivity and substance P (SP) immunoreactivity were decreased from 1 to 4 weeks after injury in CCI and from 2 to 6 weeks in crush. Gammaaminobutyric acid immunoreactivity was unchanged in both conditions at all time points. Met-enkephalin (Metenk) immunoreactivity was increased in CCI and unchanged in crush. Although SP and CGRP are involved in pain transmission, we conclude that their decrease in immunoreactivity is not specific for the CCI model, but rather a more general event in nerve de- and regeneration. The increase in immunoreactivity for the opioid peptide Met-enk, however, was only seen in the late phase of CCI, and may be specific for conditions associated with neuropathic pain and its resolution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...