Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 175 (1988), S. 9-12 
    ISSN: 1432-2048
    Keywords: Organ culture ; Shoot apex ; Zea (cultured shoot apex)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Excised shoot apices of maize (Zea mays L.), comprising the apical meristem and one or two leaf primordia, have been cultured and can form rooted plantlets. The plantlets, derived from meristems that had previously formed 7–10 nodes, develop into mature, morphologically normal plants with as many nodes as seed-grown plants. These culture-derived plants exhibited the normal pattern of development, with regard to the progression of leaf lengths along the plant and position of axillary buds and aar shoots. Isolation of the meristem from previously formed nodes reinitiates the pattern and number of nodes formed in the new plant. Thus, cells of the meristem of a maize plant at the seedling stage are not determined to form a limited number of nodes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 15 (1994), S. 155-171 
    ISSN: 0192-253X
    Keywords: Sex determination ; epistasis ; floral development ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The tassel seed mutations of maize cause sex reversal of the florets of the tassel, such that the normally staminate florets develop pistils. Although these mutations have been recognized for many years, little is known about how they act. We have tested the hypothesis that the tassel seed genes interact directly with each other and with other genes controlling sex determination in a single genetic pathway by the construction and analysis of double mutants. On the basis of the phenotypes of the double mutants, the tassel seed mutations were placed into two groups: ts1, ts2, Ts5 and ts4, Ts6. Both groups of tassel seed mutations were additive with the masculinizing mutation dwarf, indicating independent modes of action. Interactions of tassel seed mutations with silkless varied, allowing the ordering of the action of the various tassel seed mutations relative to silkless. Both groups of tassel seed mutations were epistatic with regard to sex expression to mutations that alter both architecture of the plant and distribution of male and female florets, Teopod 1, terminal ear, and teosinte branched. Thus, there are at least two separate genetic pathways that control the sex of florets in maize tassels. In addition, analysis of double mutants revealec that all tassel seed genes tested play a role in the regulation of flower morphogenesis as well as pistil suppression. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 15 (1994), S. 176-187 
    ISSN: 0192-253X
    Keywords: Floral development ; floral genetics ; Tunicate maize ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The co-dominant Tunicate (Tu) mutation in maize causes nonreproductive structures in both the male and female inflorescences to be enlarged. This mutation also affects sex determination, permitting the development of pistils in the normally staminate tassel. In order to characterize the role of the normal tu gene product, we have analysed genetic interaction between Tu and other mutations that perturb specific stages of floral development. Synergistic interactions observed suggested that the tu product functions in at least three stages of floral development-determination of spikelet primordia, differentiation of non-reproductive organs and pistil abortion in the tassel. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...