Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 163 (1969), S. 443-451 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Anatomists and gynecologists have debated the existence of a rectovaginal septum in the human female. In this investigation the connective tissue between the vagina and rectum has been reexamined by both dissection and light microscopy in four specimen types. Specimens studied and compared totaled 143 and represent an age range of from eight fetal weeks to 100 years. Included were specimens from patients with different degrees of parity and both normal and abnormal pelvic visceral support.It has been shown that a definite rectovaginal septum exists in the human female and it is probably the homologue of the male rectovesical septum. The septum is well formed by the fourteenth fetal week and consists of a thin vertical sheet of dense connective tissue which is translucent in the fresh state. In the coronal plane the septum parallels the sacral curvature. It also curves posterolaterally to become fused with the parietal endopelvic fascia. The septum extends inferiorly from the rectouterine peritoneal pouch to the perineal body. It is usually adherent to the posterior aspect of the vaginal connective tissue, capsule. This adherence, together with the difficulty in identifying it histologically may explain why the existence of the rectovaginal septum has been denied.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 170 (1971), S. 281-283 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The connective tissue supports of the human female urethra have been investigated in 14 cadavers and 20 fetuses. In all cases the urethra was found to be suspended from the pubic bone by bilaterally symmetrical anterior, posterior and intermediate pubo-urethral ligaments. The anterior and posterior ligaments were formed by reflections of the inferior and superior fascial layers of the urogenital diaphragm. The intermediate ligament represented a fusion of these fascial layers and no transverse perineal ligament was found.It is suggested that the term pubovesical ligament is a misnomer since this band of connective tissue passes from the pubic bone to the urethra and not to the bladder. It is thus analogous to the puboprostatic ligament of the male. An anatomical defect in the pubo-urethral ligaments might be a contributing factor to urinary stress incontinence in the female.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 176 (1986), S. 221-231 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Murine neural crest mesenchyme begins its escape from columnar epithelium near the tips of the midbrain-rostral hindbrain neural folds at 4+ to 5 somites of age. At that time the tip of each fold is located dorsolateral to the pharynx. Once crest formation is complete at this earliest site, it leaves behind both crest mesenchyme and overlying squamous epithelium. Crest formation then progresses medially, into the lateral margin of the neural plate. At the same time, this lateral margin elevates as the tip of the neural fold. By the time crest formation ceases at approximately 10 somites, the result of these simultaneous activities is to passively distribute the earliest mesenchyme, formed from the lateralmost epithelium, dorsolateral to the pharynx and the later, more medially derived mesenchyme lateral to the neural tube. Once formed, the crest mesenchyme dorsolateral to the pharynx is displaced ventromedially in a narrow, transient subectodermal space functionally similar to that observed in the chick embryo. Displacement might result from cell motility or the formation of matrix-filled spaces between cells of the mesenchyme. Displaced cells are closely associated with the overlying columnar epithelium. This association precedes their subsequent induction and may reflect preliminary patterning. The crest mesenchyme passively distributed lateral to the neural tube is subsequently displaced medially. Here the formation of enlarged (matrix-filled?) spaces is clearly involved in the initial displacement. Displaced cells proliferate to form the anlage of the trigeminal ganglion. The other major contributor to this ganglion is the trigeminal placode. The placodal epithelium is located dorsolateral to the pharynx of the 12-somite embryo. If the epithelia of the head maintain their relative positions, this placode is derived from the squamous epithelium formed together with the earliest crest mesenchyme. If not, an alternative source is the columnar epithelium located ventromedial to the tip of the 4 + - to 5- somite neural fold.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 179 (1987), S. 143-154 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In the mouse embryo, neural crest mesenchyme associated with the first and second pharyngeal arches escapes from the epithelium that forms the tips of the midbrain/rostral hindbrain and preotic hindbrain neural folds. To investigate the ultrastructure of crest formation, embryos with four to eight pairs of somites were processed for transmission electron microscopy. In the earliest event related to crest formation, crest precursors in the midbrain/rostral hindbrain elongated and moved all or most of their contents to the basal region of the epithelium. Elongation was probably mediated by apical bands of micro-filaments and longitudinally oriented microtubules. Elongated cells then relinquished apical associations while nonelongated cells maintained those associations and withdrew from the basal lamina. This resulted in an epithelium stratified into apical and basal (crest precursor) layers. The coalescence of enlarging extra-cellular spaces opened a delaminate gap between the two layers. Additional crest precursors entered this gap from the apical layer. From the time crest precursors began moving basally, some formed microfilament- and/or microtubule-containing processes, which penetrated the basal lamina. Some of these cells moved their contents into the larger, microtubule-containing processes, perhaps thereby escaping from the epithelium. Soon after elongating cells appeared, the basal lamina beneath the epithelium began to degrade in a pattern unrelated to process formation. This ultimately resulted in disruption of the lamina, dispersal of the basal layer of the epithelium, and release of the crest precursors in the delaminate gap. Once crest formation was complete, the apical layer reformed a basal lamina on a patch-by-patch, cell-by-cell basis. In the preotic hind-brain, elongating crest precursors apparently forced their basal faces through the basal lamina and then relinquished apical association to escape. As a result, the lamina was disrupted before the epithelium could stratify, and enlarged extracellular spaces appeared among mesenchymal cells rather than creating a delaminate gap. The failure of elongation to disrupt the basal lamina in the midbrain/rostral hindbrain and its success in the preotic hindbrain might be due to less-vigorous, less-concerted elongation in the midbrain/rostral hindbrain or to earlier, more rapid degradation of the lamina in the preotic hindbrain.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 176 (1986), S. 19-31 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The trigeminal placode is a thickened region of ectodermal epithelium located along the side of the embryonic head. Mesenchyme escapes from the placode to form neurons of the trigeminal (V) ganglion. To further our knowledge of the morphogenesis of this escape, plastic thick sections were cut from mouse embryos and stained for light microscopy by using a technique which revealed escaping mesenchyme. The escape of trigeminal mesenchyme began at approximately 12 somites of age and was substantially complete by 30 somites. These results provided spatial/temporal orientation for a subsequent electron microscopic study. The first ultrastructural manifestation of escape was the penetration of an otherwise continuous basal lamina by small cell processes. The presence of longitudinally oriented microtubules within these processes suggests that mesenchymal cells escape through the basal lamina by using microtubules to direct/move their contents (e.g., the cell nucleus) into an enlarging process. Nuclei were distorted as they passed into these processes. This distortion suggests that basal lamina, together with a possible contribution from basal microfilaments, forms a rigid obstruction which is disrupted in the region from which a process is formed. In some cases a collar of basal lamina was observed around the necks of processes, but their distal membranes were invariably lamina-free. This lamina-free membrane is possibly that which is newly formed to accommodate the growing process. In later stages of escape, instances were observed in which the lamina was completely absent beneath an escaping cell and partially degraded beneath adjacent cells as well. These instances suggest that enzymatic digestion may play a role in degrading the lamina during mesenchymal escape. Apical desmosomes were often retained beyond the initial stages of escape. Mechanisms involved in their disruption are thus not among those which initiate escape.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...