Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study uses immunohistochemistry and EM to examine the site of injury in goldfish optic nerve during axonal regeneration. Within seven days of nerve crush axons begin to regrow and a network of GFAP+ reactive astrocytes appears in the nerve on either side of the injury. However, the damaged area remains GFAP−. By 42 days after nerve crush, the sheaths of new axons acquire myelin marker 6D2, and the crush area becomes populated by a mass of longitudinally-orientated S-100+ cells. Ultrastructurally, the predominant cells in the crush area bear a strong resemblance to peripheral nerve Schwann cells; they display a one-to-one association with myelinated axons, have a basal lamina and are surrounded by collagen fibres. It is proposed that these cells are Schwann cells which enter the optic nerve as a result of crush, where they become confined to the astrocyte-free crush area.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Summary. In crushed goldfish optic nerve, regenerating axons cross the site of lesion within 10 days following injury. Some 30 days later, Schwann cells accumulate at the lesion, where they myelinate the new axons. In this study, we have used immunohistochemistry and electron microscopy to examine the cellular environment of the crush site prior to the establishment of Schwann cells in order to learn more about the early events that contribute to axonal regeneration. During the first week following injury, macrophages enter the site of lesion and efficiently phagocytose the debris. The infiltration of macrophages precedes the arrival of regenerating axons that abut and surround these phagocytes. Based on EM morphology and phagocytic capacity, macrophages of the type observed at the site of lesion are not present in the degenerating distal nerve segment, where debris clearance is shared between conventional microglia and astrocytes over a period of several weeks. During this period, axon bundles emerging distally from the injury zone become enwrapped by astrocyte processes, thereby re-establishing the characteristic fascicular cytoarchitecture of the optic nerve. The process of fasciculation also leads to the displacement of myelin debris to the margins of the fiber bundles, where it is trapped by the astrocytes. Our results suggest that the early robust appearance of macrophages at the lesion, and their effectiveness as phagocytes compared with the microglia distally, may contribute to the vigorous axonal regeneration across the crush, beyond which axons〈197〉excepting the pioneers〈197〉extend through newly formed debris-free channels delineated by astrocyte processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the regenerating goldfish optic nerves, Schwann cells of unknown origin reliably infiltrate the lesion site forming a band of peripheral-type myelinating tissue by 1–2 months, sharply demarcated from the adjacent new CNS myelin. To investigate this effect, we have interfered with cell proliferation by locally X-irradiating the fish visual pathway 24 h after the lesion. As assayed by immunohistochemistry and EM, irradiation retards until 6 months formation of new myelin by Schwann cells at the lesion site, and virtually abolishes oligodendrocyte myelination distally, but has little or no effect on nerve fibre regrowth. Optic nerve astrocyte processes normally fail to re-infiltrate the lesion, but re-occupy it after irradiation, suggesting that they are normally excluded by early cell proliferation at this site. Moreover, scattered myelinating Schwann cells also appear in the oligodendrocyte-depleted distal optic nerve after irradiation, although only as far as the optic tract. Optic nerve reticular astrocytes differ in various ways from radial glia elsewhere in the fish CNS, and our observations suggest that they may be more permissive to Schwann cell invasion of CNS tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...