Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: When we repetitively lift an object, our grip force is influenced by the mechanical object properties of the preceding lift, irrespective of whether the subsequent lift is performed with the same hand or the hand opposite to the preceding lift. This study investigates if repetitive high-frequency transcranial magnetic stimulation (rTMS) over the dominant primary motor cortex affects this relationship. After completion of 10 lifts of an object using the dominant hand, rTMS was applied over the dominant primary motor cortex for 20 s. On the first lift following rTMS, the peak grip force was significantly higher than on the lift preceding rTMS. Moreover, this measure remained elevated throughout the following set of lifts after rTMS. rTMS did not change the peak lift force generated by more proximal arm muscles. The same effect was observed when the lifts following rTMS over the dominant motor cortex were performed with the ipsilateral hand. These effects were not observed when subjects rested both hands on their lap or when a sham stimulation was applied for the same period of time. These preliminary data suggest that rTMS over the sensorimotor cortex disturbs predictive grip force planning.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 18 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We examined whether self-generated weight changes are anticipated by adequate grip force adjustments when repeatedly lifting an instrumented manipulandum. Subjects lifted a cup filled with 500 mL of water prior to and following drinking two portions of water with a straw without touching it. One half of the subjects drank from and lifted an uncovered cup receiving constant visual information about its filling level and the other half of the subjects drank from a covered cup without such visual feedback. During the lifts immediately following the drinking procedures, grip force scaling was erroneously programmed for the heavier weight of the preceding lift as was obvious from an inadequately high rate of grip force development. Vision had only a minor influence on the rate of grip force increase. The influence of vision on the scaling of peak grip force was more pronounced. More accurate force scaling was obtained with an increasing number of lifts performed under each weight condition, indicating an ongoing force adjustment process probably based on sensory feedback. We conclude that self-generation of a change in the weight of an object to be lifted is not, in itself, sufficient to elicit a predictive grip force output. Rather, accurate feedback information associated with the self-generated weight change is essential to update internal models related to the mechanical object properties. This assumption was confirmed in pilot experiments; when subjects lifted the cup after having poured water from it, they accurately scaled their fingertip force to the self-produced weight change. Here, direct sensory feedback from the grasping fingers could signal the weight change and update internal models while pouring water from the cup. Our data support the hypothesis that the sensorimotor system planning and processing predictive fingertip force can operate independently of higher-level cognitive and perceptual systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Grip force adjustments to fluctuations of inertial loads induced by vertical arm movements with a grasped object were analysed during normal and impaired finger sensibility. Normally grip force is modulated in a highly economical way in parallel with fluctuations of load force. Two subjects performed vertical up and down movements of a grasped object, both with normal finger sensibility and then cutaneously anaesthetized finger sensibility. Short breaks were taken in between single movements, during which the object was held stationary. After digital anaesthesia was applied to the grasping fingers, both subjects substantially increased the grip force. The grip force amplitude and timing still anticipated changes in load force, although the established grip force had already overcome movement-induced load force peaks. This implies that the increase of grip force and consequently the elevated force ratio between maximum grip and maximum load force are not processed to alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits appears to be necessary for economic scaling of the grip force level, but it plays a subordinate role in the precise anticipatory temporal coupling of grip and load forces during voluntary object manipulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...