Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Keywords Novelty ; Context ; Environment ; Stress ; 6-OHDA ; Rotational behavior ; Striatum ; Nucleus accumbens shell ; Caudate ; Amphetamine ; Dopamine ; Glutamate ; Aspartate ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Rationale: We have previously shown that environmental novelty enhances the behavioral activating effects of amphetamine and amphetamine-induced expression of the immediate early gene c-fos in the striatal complex, particularly in the most caudal portion of the caudate. In contrast, we found no effect of novelty on the ability of amphetamine to induce dopamine (DA) overflow in the rostral caudate or in the core of the nucleus accumbens. Objectives: The twofold aim of the present study was to determine the effect of environmental novelty on (1) amphetamine-induced DA overflow in the shell of the nucleus accumbens and in the caudal portions of the caudate, and (2) glutamate and aspartate overflow in the caudal portions of the caudate. Methods: Two groups of rats with a unilateral 6-hydroxydopamine lesion of the mesostriatal dopaminergic system received amphetamine (0.5 mg/kg, i.v.) in physically identical cages. For one group, the cages were also the home environment, whereas, for the other group, they were a completely novel environment. In vivo microdialysis was used to estimate DA, glutamate, and aspartate concentrations. Results: Environmental novelty enhanced amphetamine-induced rotational behavior (experiments 1–3) but did not alter amphetamine-induced DA overflow in either the shell of the nucleus accumbens (experiment 1) or the caudate (experiment 2). In addition, the ability of environmental novelty to enhance amphetamine-induced behavioral activation was not associated with changes in glutamate or aspartate efflux in the caudate (experiment 3). Conclusions: The present data indicate that the psychomotor activating effects of amphetamine can be modulated by environmental context independent of its primary neuropharmacological actions in the striatal complex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 151 (2000), S. 273-282 
    ISSN: 1432-2072
    Keywords: Keywords Morphine ; Dopamine ; 6-OHDA ; Mesostriatal dopamine system ; Nucleus accumbens ; Psychomotor activity ; Rotational behavior ; Sensitization ; Environment ; Novelty ; Context ; Associative learning ; Conditioning ; Stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Rationale: The repeated administration of addictive drugs, such as amphetamine, cocaine, and morphine, produces a progressive enhancement (sensitization) of their psychomotor activating effects. We have previously shown that administration of amphetamine or cocaine in a distinct test environment promotes more robust psychomotor sensitization than if they are given at home. No information is available, however, on whether this environmental manipulation has a similar effect on sensitization to morphine, a drug that enhances dopamine (DA) release in the striatum indirectly by disinhibiting midbrain DA neurons. Objectives: The main goal of present study was to determine whether exposure to a distinct environmental context facilitates morphine sensitization. Methods: As an index of psychomotor activation, we used rotational behavior in rats with a uni- lateral 6-hydroxydopamine lesion of the mesostriatal DA system. There are inconsistencies in the literature regarding the ability of morphine to elicit rotational behavior. Therefore, in experiment 1 we determined the effect of 2.0, 3.0, 4.0, 6.0, and 8.0 mg/kg, IP, of morphine on rotational behavior. In experiment 2, we studied the effect of five consecutive IV infusions of saline or morphine (2.0 mg/kg) in rats treated either in their home cage or in a distinct and relatively novel test environment. After 5 days of withdrawal, all rats received an IV infusion of 2.0 mg/kg morphine (Morphine challenge). The following day all rats received an IV infusion of saline (Saline challenge). Results: Morphine produced a dose-dependent increase in rotational behavior. Environmental novelty enhanced both the acute psychomotor response to morphine and its ability to induce psychomotor sensitization. Furthermore, a conditioned rotational response was seen only in animals treated in the novel environment. Conclusions: Environmental novelty can facilitate the development of sensitization to the psychomotor activating effects of major addictive drugs, such as amphetamine, cocaine, and morphine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...