Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 558-559 (Oct. 2007), p. 955-958 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper, we characterized atomic structure of a Σ = 3, [110]/{112} grain boundary in ayttria-stabilized cubic zirconia bicrystal. High-resolution transmission electron microscopy(HRTEM) clearly revealed that the grain boundary migrated to form {111}/{115} periodical facets,although the bicrystal was initially joined so as to have the symmetric straight boundary plane of{112}. Atomic-scale process for the facet growth could be modeled by the continuous flippings ofatoms at the boundary core
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 157-158 (May 1998), p. 249-256 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 824-828 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the formation energies and electronic structure of native defects in ZnO by a first-principles plane-wave pseudopotential method. When p-type conditions are assumed, the formation energies of donor-type defects can be quite low. The effect of self-compensation by the donor-type defects should be significant in p-type doping. Under n-type conditions, the oxygen vacancy exhibits the lowest formation energy among the donor-type defects. The electronic structure, however, implies that only the zinc interstitial or the zinc antisite can explain the n-type conductivity of undoped ZnO. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: New phases of Si3N4 that may be stable at higher pressure than spinel have been searched using a first-principles plane-wave pseudopotential method. The CaTi2O4-type phase is found to be the prime candidate for the post-spinel phase among six phases selected on the analogy to high-pressure oxides. The phase transformation from the spinel is predicted to occur at 210 GPa. All silicon atoms of the new phase are coordinated by six anions, similar to the case of the high-pressure forms of SiO2 and SiC. Because of its high energy at zero pressure, this new phase may be difficult to quench. The bandgap increases with an increase of pressure when compared in the same polymorph. However, the bandgap and the net charge decrease in the order of β, spinel, and CaTi2O4-type phases at zero pressure. The theoretical bulk modulus of the CaTi2O4-type phase is comparable with that of spinel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Current-voltage (I–V) characteristics across (0001) twist boundaries with various misorientation angles were investigated in undoped ZnO bicrystals fabricated by a hot-joining technique. It was confirmed by high-resolution transmission electron microscopy that the boundaries were perfectly joined without intergranular phase. None of the bicrystals prepared in this study exhibited nonlinear I–V characteristics irrespective of coherency at the boundaries. Therefore, grain-boundary atomic configuration had no relation to the formation of double Schottky barriers at the (0001) twist boundaries in ZnO.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 3665-3665 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 1577-1579 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The formation and ionization energies of impurities in cubic silicon nitride are investigated through first-principles calculations. Among the elements in the groups III to VI, P and O are preferable for n-type doping, while Al is favorable for p-type doping in terms of the formation and ionization energies. The compensation of doped carriers associated with the incorporation of these impurities into anti and interstitial sites can be suppressed if appropriate growth conditions are chosen. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: It is demonstrated that cuprous oxide (Cu2O) can be electrodeposited epitaxially onto silicon (Si) and indium phosphide (InP) (001) single-crystalline substrates from aqueous solution. Epitaxial electrodeposition under these conditions is remarkable considering the strong driving force for the formation of amorphous native oxide layers on Si and InP substrates. To elucidate the growth mechanisms, the microstructure of the interfaces between the Cu2O layer and the two different substrates was investigated by TEM (transmission electron microscopy) in conjunction with XEDS (X-ray energy-dispersive spectroscopy) and EELS (electron energy-loss spectroscopy). In both heteroepitaxial systems, the Cu2O layers have a unique but non-trivial crystallographic orientation relationship (OR) with the substrate, which can be described as a 45° rotation around the common [001] axis representing the substrate normal. We show that this relationship minimizes the overall misfit between corresponding interatomic spacings of the two adjacent crystals. In apparent contradiction to the unique OR, TEM revealed that in both hetero-systems the Cu2O layer is separated from the substrate by an amorphous interlayer. The thickness of the interlayer typically is a few nanometers. The presence of an amorphous interlayer contrasts with our experimental results on electrodeposited Cu2O on Au (001) single-crystal substrates, also included in this article, where TEM shows the Cu2O epilayer in direct contact with the substrate. XEDS and EELS analysis of the chemical composition and bonding at Cu2O/Si and Cu2O/InP interfaces in the as-grown state as well as after tempering revealed that the interlayer is mainly composed of SiO2 and InPO4, respectively. Most likely, the observed epitaxial layers on top of an amorphous interlayer evolve by nucleation of epitaxial Cu2O directly on the substrate. While simultaneous oxidation of the substrate leads to the formation of an amorphous layer, the epitaxial nuclei can laterally overgrow the oxide. Consequently, the local composition of the amorphous layer varies with the nature of the substrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Undoped and cobalt-doped basal inversion boundaries were fabricated in ZnO bicrystals to investigate their current–voltage characteristics. High-resolution transmission electron microscopy observations and energy-dispersive X-ray spectroscopy analyses for a cobalt-doped bicrystal revealed that the boundary was highly coherent and free from intergranular phases and precipitates, but a certain amount of cobalt was present near the boundary. The cobalt-doped bicrystals exhibited nonlinear characteristics that depended on cooling rates from annealing temperature, in contrast to linear characteristics of the undoped bicrystals. It is suggested that the presence of cobalt impurities enhances the formation of acceptor-like native defects near the boundaries to generate electrostatic potential barriers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The formation energy, structural relaxation, and defect-induced states of neutral anion vacancies of five oxides (i.e., MgO, Al2O3, ZnO, In2O3, and SnO2) and four nitrides (i.e., AlN, Si3N4, Ge3N4, and InN) are systematically discussed, based on first-principles plane-wave pseudopotential calculations. Two types of polymorphs for each compound are compared. The number of atoms included in the supercells ranged from 54 to 96. When a localized vacancy-induced state appears within the band gap, as in a typical ionic crystal, the formation energy can be well scaled by the band gap of the perfect crystal. On the other hand, when an empty and localized vacancy-induced state is located above the highest occupied band or no localized state is formed, the formation energy has a tendency to be smaller. In compounds such as ZnO and SnO2, the formation energy is dependent largely on the crystal structure. This result can be explained by the transition of the vacancy-induced state from occupied to unoccupied, which is caused by the change in atomic arrangement, as represented by the cation coordination number.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...