Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 2984-2999 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The valence doubly ionized states of acetylene and ethane are computed and discussed, complementing previous investigations on other hydrocarbons via the Green's function method. The vertical double ionization potentials are used for the interpretation of the Auger spectra of the molecules. The analysis is performed by employing a simple statistical approach to the Auger rates where the states are weighted by their two-hole components. For all hydrocarbons studied the resulting theoretical spectra exhibit maxima in good agreement with the experimental Auger peaks and reproduce the essential features of the experimental spectra. Strong final-state correlation effects are found for acetylene, ethylene, and benzene. They lead to a breakdown of the molecular orbital picture of double ionization which seems to be a typical phenomenon for unsaturated molecules. This phenomenon manifests itself in the Auger spectrum by the appearance of a high density of dicationic states which cannot be described in the independent-particle approximation. By contrast, the Auger spectrum of ethane is found to be dominated by the appearance of main states accompanied by weak satellite states at high energy. There is a correspondence between many-body effects in the Auger spectrum and the chemical bond. General aspects of correlation effects in dicationic states are discussed and related to the case of singly ionized states.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 1734-1753 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Theoretical investigations of the outer valence doubly ionized states of ethylene are presented using ab initio Green's function and configuration interaction methods. The vertical double ionization potentials computed by the Green's function method using the ADC(2) scheme are discussed in connection with the Auger spectrum of ethylene and found to reproduce the experimental spectrum quite accurately. Another main purpose of the present work is the investigation of the potential energy surfaces of selected states via ADC(2) and the study of the nuclear dynamics on them. It is shown that only the ground state of the dication is nonplanar with a torsional angle of 90°. The investigation of the topology of the surfaces reveals a low energy conical intersection of the dicationic ground and first excited states. The associated vibronic coupling problem turns out to include, additionally, the second excited state and thus, we encounter here a three-state problem. In the approximation of linear vibrational and vibronic coupling the static and dynamic aspects of the vibronic interaction are investigated by a model Hamiltonian comprising three nonseparable nondegenerate vibrational modes. The input data for the model are extracted from the ADC(2) results. With the aid of this Hamiltonian we have computed a hypothetical "sudden'' double ionization spectrum of ethylene whose complex structure is analyzed stepwise and by cuts through the pertinent adiabatic and diabatic surfaces. The analysis exhibits that the conical intersection of the two lower lying states dominates the vibronic dynamics and leads to strong vibronic mixing between them. This mixing is indirectly reinforced by the interaction between the intermediate and the upper states. As a consequence, strong nonadiabatic effects occur in the ethylene dication. Furthermore, two of the three surfaces involved in the conical intersection are also involved in a multidimensional avoided crossing. A more detailed analysis presented earlier has exhibited that the states belong to an interesting class where two potential energy surfaces are likely not to coincide although plenty of nuclear degrees of freedom exist, in principle, to allow for an intersection to occur.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Chemical Physics Letters 151 (1988), S. 273-280 
    ISSN: 0009-2614
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Electron Spectroscopy and Related Phenomena 51 (1990), S. 211-219 
    ISSN: 0368-2048
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...