Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 49 (1998), S. 511-516 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Two respiratory-deficient nuclear petites, FY23Δpet191 and FY23Δcox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23ρ0. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K i, of 2.3% (w/v) and a specific rate of ethanol production, q p, of 0.90 g ethanol g dry cells−1 h−1. FY23ρ0 was the most sensitive to ethanol, exhibiting a K i of 1.71% (w/v) and q p of 0.87 g ethanol g dry cells−1 h−1. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23Δpet191, having a K i of 2.14% (w/v) and the 85% respiratory-deficient FY23Δcox5a, having a K i of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23ρ0 is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject to the Pasteur effect and so exhibit higher rates of fermentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 405 (2000), S. 451-454 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The chromosomal speciation model invokes chromosomal rearrangements as the primary cause of reproductive isolation. In a heterozygous carrier, chromosomes bearing reciprocal translocations mis-segregate at meiosis, resulting in reduced fertility or complete sterility. Thus, chromosomal ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Phanerochaete chryososporium trpC gene has been isolated by complementation of an Escherichia coli trpC mutant. The full extent of the fungal gene, determined by sequence analysis, was found to be 2414bp. This includes a single intron of 50bp, the presence of which was confirmed by RNA-primed polymerase chain reaction analysis. This feature makes the P. chrysosporium gene unique when compared to equivalent genes from other filamentous fungi. The P. chrysosporium trpC gene encodes a single protein containing three enzyme activities involved in tryptophan biosynthesis arranged in the order: NH2–GAT–IGPS–PRAI–COOH. This order is conserved in all filamentous fungi so far examined and, indeed, is the gene order within the E. coli trp operon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 11 (1989), S. 93-98 
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A mathematical model and a computer program for its implementation have been developed to predict the distribution of plasmid copy numbers in the individual cells of a microbial population. The kinetics of accumulation of plasmid-free cells. the copy number distribution within the population and the mean copy number can all be calculated using the computer program. The model has been shown to accurately predict these parameters for recombinant plasmids in yeast populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 254 (1997), S. 555-561 
    ISSN: 1617-4623
    Keywords: Key wordsSaccharomyces  ;  Transposition  ;  Meiosis Starvation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Genome polymorphism in the yeast Saccharomyces cerevisiae is frequently the result of transposition and recombination events involving Ty elements. The activity of these retrotransposons is closely integrated with the life cycle of the host. Ty transcription is repressed in diploid, but not haploid, cells and is induced by certain stress conditions. We have found that Ty transposition at the ADH4 and ADH2 loci is not only active, but 50-fold more frequent in meiotic yeast than in mitotic cells. These data provide a further example of the success of Ty elements in maximising their own chances of spread and survival while minimising the risks to the host yeast population.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 381 (1996), S. 654-654 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] OLIVER REPLIES - Kumar and colleagues demonstrate that techniques now exist in a wide range of organisms which will permit the systematic analysis of gene function. Such an analysis is most meaningful in organisms such as Saccharomyces cerevisiae, whose genome has been completely sequenced, and it ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 16 (1982), S. 119-122 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Mutants of Saccharomyces uvarum, 5D-cyc with increased tolerance to ethanol have been isolated by a continuous selection technique which allows the culture itself to determine the intensity of selection via a feedback control circuit. The output of CO2 from a continuous culture of the yeast was monitored using an infrared analyser and the signal from that analyser fed to a potentiometric controller which regulated the introduction of a concentrated ethanol solution into the culture vessel. The frequency of ethanol addition to the culture thus increased as the tolerance of the organisms improved. The use of this system permitted the selection of mutants of yeast which were viable in the presence of 12% w/v ethanol and which showed higher fermentation rates (as measured by CO2 production) than the wild-type in the presence of 10% w/v ethanol and above. The technique of continuous selection with feedback should be generally applicable to the isolation of mutants of any microorganism to improved tolerance to any inhibitory condition of either its physical or chemical environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The effect of ethanol on yeast growth and fermentation has been studied in two strains, NCYC479 (a commercial saké yeast) and 5D-cyc (a laboratory haploid strain). The effect of ethanol on growth was similar in the two strains. It showed complex kinetics which resulted from both the inhibition of the growth rate itself and also a reduction in cell viability. The growth and viability effects had different inhibition constants. Ethanol was less inhibitory toward fermentation than toward growth. Fermentation in the saké yeast was more ethanol tolerant than in the laboratory strain. The inhibition kinetics for fermentation were less complex than those for growth and followed the classical noncompetitive pattern.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A double mutant sod1/pgk1 strain of Saccharomyces cerevisiae has been constructed in order to investigate the effects of different environmental conditions on yeast physiology, plasmid stability, and superoxide dismutase (SOD) production. Strains were transformed with yeast episomal plasmids (YEp) containing both PGK1 and SOD1 genes and were grown on fermentable carbon sources and under vigorous aeration. Under these conditions, the presence of the PGK1 gene was made essential for growth and both genes were efficiently expressed. However, plasmid-borne PGK1 was found not to increase the stability of YEp vectors in batch cultures of Pgk− cells. Paradoxically, plasmid stability increased during the respiratory phase of growth. An investigation of the metabolism of Pgk− cells demonstrated that these glycolytic pathway mutants do not appreciably metabolize glycerol. Thus Pgk+, plasmid-containg, cells have a selective advantage during the respiratory phase of batch growth since they can utilize both glycerol and ethanol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...