Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bradford : Emerald
    International journal of numerical methods for heat & fluid flow 9 (1999), S. 515-542 
    ISSN: 0961-5539
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We present a new nonlinear axisymmetric finite element model for heat transfer and powder deposition in rotational molding. Arbitrary Lagrangian Eulerian techniques are employed to track the gradual growth of the plastic layer. Results using this approach compare well with earlier 1-D models and with experimental data. Using the model to study the effects of locally enhanced heat transfer on part wall thickness, we find that controlling the relative magnitudes of radial and circumferential heat transfer is crucial in order to obtain desired wall thickness profiles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 1353-1367 
    ISSN: 0271-2091
    Keywords: Singular finite elements ; Stokes flow ; Stress singularity ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abrupt changes in boundary conditions in viscous flow problems give rise to stress singularities. Ordinary finite element methods account effectively for the global solution but perform poorly near the singularity. In this paper we develop singular finite elements, similar in principle to the crack tip elements used in fracture mechanics, to improve the solution accuracy in the vicinity of the singular point and to speed up the rate of convergence. These special elements surround the singular point, and the corresponding field shape functions embody the form of the singularity. Because the pressure is singular, there is no pressure node at the singular point. The method performs well when applied to the stick-slip problem and gives more accurate results than those from refined ordinary finite element meshes.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 10 (1990), S. 357-372 
    ISSN: 0271-2091
    Keywords: Singular finite elements ; Die swell ; Sudden expansion ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The singular finite element method is used to solve the sudden-expansion and the die-swell problems in order to improve the accuracy of the solution in the vicinity of the singularity and to speed up the convergence. The method requires minor modifications to standard finite element schemes, and even coarse meshes give more accurate results than refined ordinary finite element meshes. Improved normal stress results for the sudden-expansion problem have been obtained for various Reynolds numbers up to 100 using the singular elements constructed for the creeping flow problem. In addition, the normal stresses at the walls appear to be insensitive to the singularity powers used in the construction of the singular basis functions. The die-swell problem is solved using the singular elements constructed for the stick-slip problem. The singular elements accelerate the convergence of the free surface dramatically.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...