Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 60 (1963), S. 667-687 
    ISSN: 1432-0878
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment. The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall. In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules. The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Persistent estrus and diestrus was produced in rats by the administration of estrone for either 5 days or 30 days, respectively, immediately after birth. Female rats without any treatment were used for control. After these rats grew up, the anterior pituitaries were examined by electron microscopy. The identification criteria for two types of gonadotrophs, FSH-and LH-cells, proposed by Barnes were adopted. In the persistent estrous rats, FSH-gonadotrophs were almost normal, but LH-gonadotrophs were filled with an abundance of secretory granules which were probably suppressed in discharge. On the other hand, in the persistent diestrous rats, FSH-cells were few in number and strongly atrophic, containing a few secretory granules, while LH-cells were almost normal or rather slightly activated. These electron microscopic findings well coincide with the results of light microscopy of ovaries, which suggested that in the persistent estrous rats FSH secretion might be almost normal but the secretion of LH might be inhibited, while in the persistent diestrous rats FSH secretion might be almost totally abolished but LH might be moderately secreted. From these findings, identification of FSH-and LH-gonadotrophs in the anterior pituitary of the rat well coincides with that proposed by Barnes in mice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Neurosecretory granules ; Morphometric classification ; Neurohypophysis ; Hagfish, Eptatretus burgeri ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Neurosecretory axons in the neurohypophysis of the hagfish, Eptatretus burgeri, were statistically classified into six types according to the size of secretory granules. These types are comparable with those in higher vertebrates. The concentration of each axon type is different in three regions: anterior dorsal wall, posterior dorsal wall, and ventral wall. The regional differences of the hagfish neurohypophysis are discussed in relation to the regional differentiation of the tetrapod neurohypophysis into the median eminence and the pars nervosa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Intestine ; Glucagon ; Glucagon-like peptide, Pancreatic islets ; Salmo gairdneri ; Oncorhynchus kisutch
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Pancreatic islets of salmon contain at least two peptides of the glucagon family: 29-amino acid glucagon and 31-amino acid glucagon-like peptide (GLP). Both peptides were recently isolated from the pancreatic islets of coho salmon and sequenced (Plisetskaya et al. 1986). Antibodies generated against these two peptides and against human glucagon were used as immunocytochemical probes to investigate whether glucagon and GLP are processed in the same, or in different cell types in the pancreatic islets and the gut of salmon. Two salmonid species, rainbow trout and coho salmon, were studied. All islet A-cells in the two species were immunoreactive toward both anti-salmon (s)-glucagon and anti-s-GLP. Similar colocalization of glucagon and GLP immunoreactivities was found in open-type endocrine cells in mucosae of the small intestine (including the pyloric coecae) and the large intestine close to the vent of rainbow trout. None of the antibodies stained mucosal cells of the body of the stomach. These results suggest that in the pancreas and the gut of salmonid fish the same cells produce both glucagon and GLP. These peptides are most likely the products of a single gene coding for the preproglucagon sequence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...