Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 30 (1991), S. 7718-7730 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 40 (1948), S. 2361-2370 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 54 (1932), S. 54-71 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 30 (1958), S. 2035-2035 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: During the past century, annual mean temperature has increased by 0.75°C and precipitation has shown marked variation throughout the Mediterranean basin. These historical climate changes may have had significant, but presently undefined, impacts on the productivity and structure of sclerophyllous shrubland, an important vegetation type in the region. We used a vegetation model for this functional type to examine climate change impacts, and their interaction with the concurrent historical rise in atmospheric CO2. Using only climate and soil texture as data inputs, model predictions showed good agreement with observations of seasonal and regional variation in leaf and canopy physiology, net primary productivity (NPP), leaf area index (LAI) and soil water. Model simulations for shrubland sites indicated that potential NPP has risen by 25% and LAI by 7% during the past century, although the absolute increase in LAI was small. Sensitivity analysis suggested that the increase in atmospheric CO2 since 1900 was the primary cause of these changes, and that simulated climate change alone had negative impacts on both NPP and LAI. Effects of rising CO2 were mediated by significant increases in the efficiency of water-use in NPP throughout the region, as a consequence of the direct effect of CO2 on leaf gas exchange. This increase in efficiency compensated for limitation of NPP by drought, except in areas where drought was most severe. However, while water was used more efficiently, total canopy water loss rose slightly or remained unaffected in model simulations, because increases in LAI with CO2 counteracted the effects of reduced stomatal conductance on transpiration. Model simulations for the Mediterranean region indicate that the recent rise in atmospheric CO2 may already have had significant impacts on productivity, structure and water relations of sclerophyllous shrub vegetation, which tended to offset the detrimental effects of climate change in the region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Polar forests once extended across the high-latitude landmasses during ice-free ‘greenhouse’ intervals in Earth history. In the Cretaceous ‘greenhouse’ world, Arctic conifer forests were considered predominantly deciduous, while those on Antarctica contained a significantly greater proportion of evergreens. To investigate the causes of this distinctive biogeographical pattern, we developed a coupled model of conifer growth, soil biogeochemistry and forest dynamics. Our approach emphasized general relationships between leaf lifespan (LL) and function, and incorporated the feedback of LL on soil nutrient status. The model was forced with a mid-Cretaceous ‘greenhouse’ climate simulated by the Hadley Centre GCM. Simulated polar forests contained mixtures of dominant LLs, which reproduced observed biogeographical patterns of deciduous, mixed and evergreen biomes. It emerged that disturbance by fire was a critical factor. Frequent fires in simulated Arctic ecosystems promoted the dominance of trees with short LLs that were characterized by the rapid growth and colonization rates typical of today's boreal pioneer species. In Antarctica, however, infrequent fires allowed trees with longer LLs to dominate because they attained greater height, despite slower growth rates. A direct test of the approach was successfully achieved by comparing modelled LLs with quantitative estimates using Cretaceous fossil woods from Svalbard in the European Arctic and Alexander Island, Antarctica. Observations and the model both revealed mixed Arctic and evergreen Antarctic communities with peak dominance of trees with the same LLs. Our study represents a significant departure from the long-held belief that leaf habit was an adaptation to warm, dark winter climates, and highlights a previously unrecognized role for disturbance (in whatever guise) in polar forest ecology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Photosynthesis is commonly stimulated in grasslands with experimental increases in atmospheric CO2 concentration ([CO2]), a physiological response that could significantly alter the future carbon cycle if it persists in the long term. Yet an acclimation of photosynthetic capacity suggested by theoretical models and short-term experiments could completely remove this effect of CO2. Perennial ryegrass (Lolium perenne L. cv. Bastion) was grown under an elevated [CO2] of 600 µmol mol−1 for 10 years using Free Air CO2Enrichment (FACE), with two contrasting nitrogen levels and abrupt changes in the source : sink ratio following periodic harvests. More than 3000 measurements characterized the response of leaf photosynthesis and stomatal conductance to elevated [CO2] across each growing season for the duration of the experiment. Over the 10 years as a whole, growth at elevated [CO2] resulted in a 43% higher rate of light-saturated leaf photosynthesis and a 36% increase in daily integral of leaf CO2 uptake. Photosynthetic stimulation was maintained despite a 30% decrease in stomatal conductance and significant decreases in both the apparent, maximum carboxylation velocity (Vc,max) and the maximum rate of electron transport (Jmax). Immediately prior to the periodic (every 4–8 weeks) cuts of the L. perenne stands, Vc,max and Jmax, were significantly lower in elevated than in ambient [CO2] in the low-nitrogen treatment. This difference was smaller after the cut, suggesting a dependence upon the balance between the sources and sinks for carbon. In contrast with theoretical expectations and the results of shorter duration experiments, the present results provide no significant change in photosynthetic stimulation across a 10-year period, nor greater acclimation in Vc,max and Jmax in the later years in either nitrogen treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Spring wheat was grown from emergence to grain maturity in two partial pressures of CO2 (pCO2): ambient air of nominally 37 Pa and air enriched with CO2 to 55 Pa using a free-air CO2 enrichment (FACE) apparatus. This experiment was the first of its kind to be conducted within a cereal field without the modifications or disturbance of microclimate and rooting environment that accompanied previous studies. It provided a unique opportunity to examine the hypothesis that continuous exposure of wheat to elevated pCO2 will lead to acclimatory loss of photosynthetic capacity. The diurnal courses of photosynthesis and conductance for upper canopy leaves were followed throughout the development of the crop and compared to model-predicted rates of photosynthesis. The seasonal average of midday photosynthesis rates was 28% greater in plants exposed to elevated pCO2 than in contols and the seasonal average of the daily integrals of photosynthesis was 21% greater in elevated pCO2 than in ambient air. The mean conductance at midday was reduced by 36%. The observed enhancement of photosynthesis in elevated pCO2 agreed closely with that predicted from a mechanistic biochemical model that assumed no acclimation of photosynthetic capacity. Measured values fell below predicted only in the flag leaves in the mid afternoon before the onset of grain-filling and over the whole diurnal course at the end of grain-filling. The loss of enhancement at this final stage was attributed to the earlier senescence of flag leaves in elevated pCO2. In contrast to some controlled-environment and field-enclosure studies, this field-scale study of wheat using free-air CO2 enrichment found little evidence of acclimatory loss of photosynthetic capacity with growth in elevated pCO2 and a significant and substantial increase in leaf photosynthesis throughout the life of the crop.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Experimental and modelling work suggests a strong dependence of olive flowering date on spring temperatures. Since airborne pollen concentrations reflect the flowering phenology of olive populations within a radius of 50 km, they may be a sensitive regional indicator of climatic warming. We assessed this potential sensitivity with phenology models fitted to flowering dates inferred from maximum airborne pollen data. Of four models tested, a thermal time model gave the best fit for Montpellier, France, and was the most effective at the regional scale, providing reasonable predictions for 10 sites in the western Mediterranean. This model was forced with replicated future temperature simulations for the western Mediterranean from a coupled ocean-atmosphere general circulation model (GCM). The GCM temperatures rose by 4·5 °C between 1990 and 2099 with a 1% per year increase in greenhouse gases, and modelled flowering date advanced at a rate of 6·2 d per °C. The results indicated that this long-term regional trend in phenology might be statistically significant as early as 2030, but with marked spatial variation in magnitude, with the calculated flowering date between the 1990s and 2030s advancing by 3–23 d. Future monitoring of airborne olive pollen may therefore provide an early biological indicator of climatic warming in the Mediterranean.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...