Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Polymer bulletin 40 (1998), S. 345-352 
    ISSN: 1436-2449
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. The phenomenon of shear-induced aggregation has been investigated in dilute solutions of high molar mass polystyrene standards in phthalic acid esters by light scattering and simultaneous rheometrical measurements. An optical-rheological correlation is found which can easily be understood by simple molecular kinetic models. Systematic examination of the polymer solutions, varying temperature, concentration, and molar mass, shows a dependence of the aggregation on these parameters which fits thermodynamic models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 2397-2408 
    ISSN: 0887-6266
    Keywords: diffusion ; glassy polymers ; small molecules ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Small molecules in glassy polymers are considered to occupy sites with a distribution of free energies of dissolution. Then their diffusivity depends on concentration and temperature in the same way as it has been derived for hydrogen atoms in metallic glasses. For hydrogen it was shown that the tracer diffusion coefficient is proportional to the activity coefficient of the solute atoms. The latter can be evaluated from measured data of sorption of the small molecules in the polymer. Knowing this quantity, the thermodynamic factor can be calculated and the concentration dependence of the mutual diffusion coefficient is obtained in excellent agreement with published experimental results. New experimental results are presented for the diffusion coefficient of CO2 in Kapton and four polycarbonates (BPA-PC, BPZ-PC, TMBPA-PC, and TMC-PC) in the low CO2 pressure range of a few mbar up to 1 bar. The results are in agreement with the model developed for hydrogen. The reference diffusion coefficient, which is a fitting parameter of the model that is independent of the distribution of free energies is smallest for the polycarbonate BPZ-PC having a high γ-relaxation temperature. This correlation between the diffusion coefficient and the dynamics of the polymer can be found for other substituted polycarbonates as well. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2397-2408, 1997
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 483-494 
    ISSN: 0887-6266
    Keywords: small penetrants ; sorption isotherms ; site distribution ; elastic distortion ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Pressure-composition isotherms were determined at 20°C for CO2 in Kapton and various substituted polycarbonates and for H2O, Ar, N2, CH4, and acetone in bisphenol-A-polycarbonate. The isotherms are described by two parameters an average free energy of sorption and a width of a Gaussian distribution of free sorption energies. Within the framework of a recent model these parameters can be calculated assuming an elastic distortion of the polymer caused by the incorporation of solute atoms in preexisting holes. By comparing experimental values with predictions of the model the experimental width of the free energy distribution is only 30% smaller than the theoretical one. Functional relationships are obeyed between the sorption parameters on the one hand and glass transition temperature, average hole volume, and molecular volume of the solute on the other hand. Deviations occur for larger molecules like acetone and ethylene which are attributed to a viscoelastic distortion of the polymer. Comparing free energies of solution for the rubbery and glassy state of the polymer reveals more negative values for the glassy polymers despite their extra elastic distortion energy. This discrepancy is overcome by taking into account that the occupied volume has to be re-formed in the case of the rubbery or liquid polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 483-494, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...