Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Diabetic retinopathy ; rat model ; omega-3 fatty acids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Omega-3 fatty acids exert several important biological effects on factors that may predispose to diabetic retinopathy. Potential pathogenetic mechanisms include platelet dysfunction, altered eicosanoid production, increased blood viscosity in association with impaired cell deformability and pathologic leucocyte/endothelium interaction. Therefore, we tested whether a 6-month administration of fish oil (750 mg Maxepa, 5 times per week), containing 14% eicosapentaenoic acid (EPA) and 10% docosahexaenic acid, could inhibit the development of experimental retinopathy of the streptozotocin-diabetic rat. The efficiency of fish oil supplementation was evaluated by measuring EPA concentrations in total, plasma and membrane fatty acids and by measuring the generation of lipid mediators (leukotrienes and thromboxanes). Retinal digest preparations were quantitatively analysed for pericyte loss, and the formation of acellular capillaries. Omega-3 fatty acid administration to diabetic rats resulted in a twofold increase of EPA 20∶5 in total fatty acids, and a reduction of the thromboxane2/3 ratio from 600 (untreated diabetic rats) to 50 (treated diabetic rats). Despite these biochemical changes, diabetes-associated pericyte loss remained unaffected and the formation of acellular, occluded capillaries was increased by 75% in the fish oil treated diabetic group (115.1±26.8; untreated diabetic 65.2±15.0 acellular capillary segments/mm2 of retinal area). We conclude from this study that dietary fish oil supplementation may be harmful for the diabetic microvasculature in the retina.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Diabetic retinopathy ; rat model ; omega-3 fatty acids.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Omega-3 fatty acids exert several important biological effects on factors that may predispose to diabetic retinopathy. Potential pathogenetic mechanisms include platelet dysfunction, altered eicosanoid production, increased blood viscosity in association with impaired cell deformability and pathologic leucocyte/endothelium interaction. Therefore, we tested whether a 6-month administration of fish oil (750 mg Maxepa, 5 times per week), containing 14 % eicosapentaenoic acid (EPA) and 10 % docosahexaenic acid, could inhibit the development of experimental retinopathy of the streptozotocin-diabetic rat. The efficiency of fish oil supplementation was evaluated by measuring EPA concentrations in total, plasma and membrane fatty acids and by measuring the generation of lipid mediators (leukotrienes and thromboxanes). Retinal digest preparations were quantitatively analysed for pericyte loss, and the formation of acellular capillaries. Omega-3 fatty acid administration to diabetic rats resulted in a twofold increase of EPA 20:5 in total fatty acids, and a reduction of the thromboxane2/3 ratio from 600 (untreated diabetic rats) to 50 (treated diabetic rats). Despite these biochemical changes, diabetes-associated pericyte loss remained unaffected and the formation of acellular, occluded capillaries was increased by 75 % in the fish oil treated diabetic group (115.1 ± 26.8; untreated diabetic 65.2 ± 15.0 acellular capillary segments/mm2 of retinal area). We conclude from this study that dietary fish oil supplementation may be harmful for the diabetic microvasculature in the retina. [Diabetologia (1996) 39: 251–255]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1440
    Keywords: Psoriasis ; Lipid infusion ; n-3 fatty acids ; Neutrophil leukotriene generation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Twenty patients hospitalized for acute psoriasis guttata with a minimum 10% of body surface area involvement (range 10–90%) completed a 10-day trial in which they were randomly allocated to receive daily infusions with either an n-3 fatty acid based lipid emulsion [100 ml/day with 2.1 g eicosapentaenoic (EPA) and 21 g docosahexaenoic acid (DHA)] or a conventional n-6 lipid emulsion (EPA+DHA〈0.1 g/100 ml). The severity of disease was evaluated by scoring daily erythema, infiltration, and desquamation and by a subjective scoring of clinical manifestations offered by the patients. Leukotriene (LT) and platelet-activating factor (PAF) generation were investigated in ionophore-stimulated neutrophils obtained on days 0, 1, 3, 5, 10, and 40. Moderate improvement in clinical manifestations was noted in the n-6 group (changes in score systems between 16–25% from baseline within 10 days). In contrast, the severity of disease markedly decreased in all patients of the n-3 group, with improvements in all score systems ranging between 45% and 76% within 10 days (P〈0.05 for each variable). The difference in response to the two regimens was evident within 4–7 days after onset of lipid infusion. A more than ten fold increase in neutrophil EPA-derived 5-1ipoxygenase product formation (LTB5, its omega-oxidation products, non-enzymatic degradation products of LTA5 and 5-hydroxyeicosapentaenoic acid) was noted in the n-3 group but not in the n-6 group. Neutrophil PAF generation increased in the n-6 group but decreased in the n-3 group. In conclusion, modulation of eicosanoid metabolism by intravenous n-3 fatty acid supplementation appears to exert a rapid beneficial effect on inflammatory skin lesions in acute guttate psoriasis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    British journal of dermatology 137 (1997), S. 0 
    ISSN: 1365-2133
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In recent years, the genus Malassezia has been reclassified based on molecular data. In addition to M. furfur, M. pachydermatis and M. sympodialis, four new species, M. globosa, M. obtusa, M. restricta and M. slooffiiae, have been described. However, apart from their lipid dependence, little is known about the metabolism and nutritional requirements of all the seven species. Further to recent studies, 10 hydrophilic emulsifiers (HLB 〉 10) were examined in an agar diffusion test to determine their growth-promoting effect on reference strains of the different Malassezia species. Polyethylene glycol (PEG) 7 glyceryl monoalcanoate (Cetiol HE), PEG–glyceryl stearate (Tagat S2) and macrogol-50 stearate (Myrj 53) were metabolized by all strains, while PEG-35 castor oil (Cremophor EL) was metabolized only by M. furfur. The latter observation is due to a different metabolism of castor oil and its main component, ricinoleic acid (12-hydroxy oleic acid), which may also give an insight into the pathogenesis of diseases that are associated with Malassezia spp. As hydroxy fatty acids are important in maintaining the epidermal structure and function, their metabolism specifically by M. furfur might clarify some clinical aspects of pityriasis versicolor. Apart from this speculation, use of Cremophor EL, with splitting of esculin as an additional key character, improves the distinction of the species M. furfur, M. slooffiae and M. sympodialis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...