Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 1834-1838 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The dynamical behavior and equilibrium distribution of linear bead-rod and bead-spring polymers differ even in the limit of infinitely stiff springs. Imposing metric pseudopotential forces on the bead-rod chains yields the behavior of bead-spring chains in Langevin and Brownian Dynamics simulations. Here we present a simple, compact, and efficient algorithm for computing the required metric correction forces at minimal computational cost. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1528
    Keywords: Extensional viscosity ; extensional flow ; elongational viscosity ; opposed nozzles ; extensional rheometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Opposed-nozzle devices are widely used to try to measure the extensional viscosity of low-viscosity liquids. A thorough literature survey shows that there are still several unanswered questions on the relationship between the quantity measured in opposed-nozzle devices and the “true” extensional viscosity of the liquids. In addition to extensional stresses, opposed nozzle measurements are influenced by dynamic pressure, shear on the nozzles, and liquid inertia. Therefore the ratio of the apparent extensional viscosity that is measured to the shear viscosity that is independently measured is greater than three even for Newtonian liquids. The effect of inertia on the extensional measurements is analyzed by computer-aided solution of the Navier-Stokes system, and by experiments on low-viscosity Newtonian liquids (1 mPa s〈/ηS ⩽ 800 mPa s). The effect of nozzle separation-to-diameter ratio on the average residence time of the liquid is analyzed under the assumption of simple extensional flow kinematics. The average residence time of the liquid is independent of this ratio unless the radial inflow section of the extensional flow volume is related to the nozzle separation. Experiments indicate that in some cases widening the gap lowers the apparent extensional viscosity that is measured, whereas in other cases the opposite is true. In the light of these theoretical considerations and experimental observations, the use of systematic corrections to extensional viscosity measurements on non-Newtonian liquids is not recommended. Thus opposed nozzle devices should be considered as useful indexers rather than rheometers. Finally, measurements on a series of semi-dilute solutions of high molecular weight poly(ethylene oxide) in. water are also reported.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1528
    Keywords: Key words Extensional viscosity ; extensional flow ; elongational viscosity ; opposed nozzles ; extensional rheometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Opposed-nozzle devices are widely used to try to measure the extensional viscosity of low-viscosity liquids. A thorough literature survey shows that there are still several unanswered questions on the relationship between the quantity measured in opposed-nozzle devices and the “true” extensional viscosity of the liquids. In addition to extensional stresses, opposed nozzle measurements are influenced by dynamic pressure, shear on the nozzles, and liquid inertia. Therefore the ratio of the apparent extensional viscosity that is measured to the shear viscosity that is independently measured is greater than three even for Newtonian liquids. The effect of inertia on the extensional measurements is analyzed by computer-aided solution of the Navier-Stokes system, and by experiments on low-viscosity Newtonian liquids (1mPas≤η S ≤800mPas). The effect of nozzle separation-to-diameter ratio on the average residence time of the liquid is analyzed under the assumption of simple extensional flow kinematics. The average residence time of the liquid is independent of this ratio unless the radial inflow section of the extensional flow volume is related to the nozzle separation. Experiments indicate that in some cases widening the gap lowers the apparent extensional viscosity that is measured, whereas in other cases the opposite is true. In the light of these theoretical considerations and experimental observations, the use of systematic corrections to extensional viscosity measurements on non-Newtonian liquids is not recommended. Thus opposed nozzle devices should be considered as useful indexers rather than rheometers. Finally, measurements on a series of semi-dilute solutions of high molecular weight poly(ethylene oxide) in water are also reported.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 532-537 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Radiation absorption at the surface of catalytic particles is the initial step of photocatalytic oxidation reactions currently considered for their potential effectiveness in the treatment of polluted water with traces of highly toxic organics. Owing to the presence of catalyst particles within the fluid phase, the radiation field within a photocatalytic reactor results from the absorption and scattering within the participating medium. An annular reactor with a coaxial central lamp was considered, and the resulting 2-D radiation field was analyzed using a Monte Carlo technique to solve the radiative transfer equation. Results are discussed based on the relevant optical parameters, and a heuristic is derived for the design and rating of a photocatalytic reactor. To exploit the reaction volume effectively, the order of magnitude of the optical thickness should be close to unity, and for a given value of the absorption coefficient the catalyst with the lowest albedo should be selected; however, a precise evaluation of the phase function is not crucial to a relable representation of the radiation field.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...