Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The mechanical properties of Bi2Sr2CaCu2O8+delta fibers produced via laser-induced directional solidification at different growth rates were determined through longitudinal and transverse tension tests, as well as flexure tests. In addition, polished sections of as-received fibers and the fracture surfaces of the broken samples were examined using scanning electron microscopy to elucidate the relationship between the microstructure and the mechanical properties. The fibers were anisotropic, and the transverse fiber strength was very low, because of early failure via cleavage of the grains perpendicular to the c-axis. The longitudinal strength and the degree of anisotropy increased as the fiber growth rate decreased, whereas the transverse strength followed the opposite trend. This behavior was due to changes in the porosity and the alignment of the crystals along the fiber axis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The wear resistance of four Al2O3/SiC nanocomposites that contained SiC particles of varying average size (40, 200, and 800 nm) was studied under dry sliding conditions and compared with the results obtained in unreinforced alumina. The wear rate of the alumina and the nanocomposites of equivalent grain size increased as the contact load increased; however, the nanocomposite wear resistance at high contact loads was better than that of the alumina by a factor of 3–5. The wear resistance of the nanocomposites of submicrometer grain size was fairly independent of the contact load, and their wear resistance at high contact loads was up to two orders of magnitude better than that of the alumina. The mechanisms responsible for these behaviors were discussed in terms of the microscopic wear mechanisms that were observed on the worn surfaces.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 80 (1997), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Tensile and fracture tests were conducted at 20° and 1200°C on a ceramic-matrix composite that was composed of an alumina (Al2O3) matrix that was bidirectionally reinforced with 37 vol% silicon carbide (SiC) Nicalon fibers. The composite presented nonlinear behavior at both temperatures; however, the strength and toughness were significantly reduced at 1200°C. In accordance with this behavior, matrix cracks were usually stopped or deflected at the fiber/matrix interface, and fiber pullout was observed on the fracture surfaces at 20° and 1200°C. The interfacial sliding resistance at ambient and elevated temperatures was estimated from quantitative microscopy analyses of the saturation crack spacing in the matrix. The in situ fiber strength was determined both from the defect morphology on the fibers and from the size of the mirror region on the fiber fracture surfaces. It was shown that composite degradation at elevated temperature was due to the growth of defects on the fiber surface during high-temperature exposure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...