Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: Key words: HlyA — RTX toxins — Leukotoxicity — Pore Formation — Pore properties — Human macrophages — Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Escherichia coli hemolysin is known to cause hemolysis of red blood cells by forming hydrophilic pores in their cell membrane. Hemolysin-induced pores have been directly visualized in model systems such as planar lipid membranes and unilamellar vesicles. However this hemolysin, like all the members of a related family of toxins called Repeat Toxins, is a potent leukotoxin. To investigate whether the formation of channels is involved also in its leukotoxic activity, we used patch-clamped human macrophages as targets. Indeed, when exposed to the hemolysin, these cells developed additional pores into their membrane. Such exogenous pores had properties very different from the endogenous channels already present in the cell membrane (primarily K+ channels), but very similar to the pores formed by the toxin in purely lipidic model membranes. Observed properties were: large single channel conductance, cation over anion selectivity but weak discrimination among different cations, quasilinear current-voltage characteristic and the existence of a flickering pre-open state of small conductance. The selectivity properties of the toxin channels appearing in phospholipid vesicles were also investigated, using a specially adapted polarization/depolarization assay, and were found to be completely consistent with that of the current fluctuations observed in excised macrophage patches.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: Key words: α-toxin — Protons — Divalent cations —Polyethyleneglycol — 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine — (125I-TID) — Lipid membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Nonelectrolytes such as polyethylene glycols (PEG) and dextrans (i) promote the association of S. aureus α-toxin with liposomes (shown by Coomassie staining) and (ii) enhance the rate and extent of calcein leakage from calcein-loaded liposomes; such leakage is inhibited by H+, Zn2+ and Ca2+ to the same extent as that of nonPEG-treated liposomes. Incubation of liposomes treated with α-toxin in the presence of PEG with the hydrophobic photo-affinity probe 3-(trifluoromethyl)-3-m-[125I]iodophenyl)diazirine(125I-TID) labels monomeric and—predominantly—hexameric forms of liposome-associated α-toxin; in the absence of PEG little labeling is apparent. At high concentrations of H+ and Zn2+ but not of Ca2+—all of which inhibit calcein leakage—the distribution of label between hexamer and monomer is perturbed in favor of the latter. In α-toxin-treated planar lipid bilayers from which excess toxin has been washed away, PEGs and dextrans strongly promote the appearance of ion-conducting pores. The properties of such pores are similar in most regards to pores induced in the absence of nonelectrolytes; they differ only in being more sensitive to ``closure'' by voltage (as are pores induced in cells). In both systems, the stimulation by nonelectrolytes increases with concentration and with molecular mass up to a maximum around 2,000 Da. We conclude (i) that most of the α toxin that becomes associated with liposome or planar lipid bilayers does not form active pores and (ii) that the properties of α-toxin-induced pores in lipid bilayers can be modulated to resemble those in cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 105 (1992), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Common features in the induction of pores by various agents are as follows: induction is stochastic and progressive; damage by different agents is often synergistic and limited. The prevention of membrane damage is affected by trivalent and divalent cations, by low pH, by low ionic strength and by high osmotic pressure. The inhibitory role of protons and divalent cations is considered in greater detail: pore-forming agents can be classified into two groups: channels across planar lipid bilayers induced by the first group display voltage-sensitive, reversible inhibition by divalent cations; channels of the second group show voltage-insensitive, irreversible inhibition by divalent cations. A search for the ligands to which divalent cations and protons bind has proved elusive. Comparison with the phenomenon of ‘surface conductance’ through narrow apertures, that is manifest in the absence of any pore-forming agent, may prove fruitful.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0005-2736
    Keywords: Pore-forming toxin ; Primary structure ; Protein-lipid interaction ; Secondary structure
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Biochemical and Biophysical Methods 25 (1992), S. 83-94 
    ISSN: 0165-022X
    Keywords: Anion exchange ; Erythrocyte ghost ; Hemolysis ; Ion channel ; Pore-forming toxin ; Proteolytic enzyme
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...