Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 53 (1994), S. 513-525 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The relationship of blend morphology to deformation mechanisms and notched Izod impact strength was studied with three butadiene-based impact modifiers for polycarbonate (PC). The impact modifiers were a linear polybutadiene (PB), a styrene-butadiene-styrene block copolymer (SBS), and a structured latex particle having a PB core and methyl methacrylate/styrene shell (MBS). The particle-size distribution in the blends was determined from transmission electron micrographs (TEM). Fractographic analysis combined with TEM examination of thin sections from impacted specimens provided insight into the failure mechanisms. Good impact was achieved with PC/MBS blends when cavitation of the core-shell particles relieved triaxiality and enabled the matrix to fracture by the plane stress ductile tearing mode that is characteristic of thin PC. The best impact properties were obtained with PC/SBS blends when the modifier was dispersed as aggregates of small particles. Cavitation at the weak internal boundaries relieved triaxiality, but subsequent coalescence of cavitated particles during ductile drawing of the matrix created critical size voids and the resulting secondary cracks reduced the toughness of the blend. In general, PB did not significantly enhance the impact strength of PC. © 1994 John Wiley & Sons, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...