Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical imaging and vision 9 (1998), S. 49-67 
    ISSN: 1573-7683
    Keywords: geometric features ; transformation groups ; uniform distribution ; invariant measure ; invariant distance ; expected features ; mean features
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Complex geometric features such as oriented points, lines or 3D frames are increasingly used in image processing and computer vision. However, processing these geometric features is far more difficult than processing points, and a number of paradoxes can arise. We establish in this article the basic mathematical framework required to avoid them and analyze more specifically three basic problems: (1) what is a random distribution of features, (2) how to define a distance between features, (3) and what is the “mean feature” of a number of feature measurements? We insist on the importance of an invariance hypothesis for these definitions relative to a group of transformations that models the different possible data acquisitions. We develop general methods to solve these three problems and illustrate them with 3D frame features under rigid transformations. The first problem has a direct application in the computation of the prior probability of a false match in classical model-based object recognition algorithms. We also present experimental results of the two other problems for the statistical analysis of anatomical features automatically extracted from 24 three-dimensional images of a single patient's head. These experiments successfully confirm the importance of the rigorous requirements presented in this article.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 25 (1997), S. 203-229 
    ISSN: 1573-1405
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper, we propose and analyze several methods to estimate a rigid transformation from a set of 3-D matched points or matched frames, which are important features in geometric algorithms. We also develop tools to predict and verify the accuracy of these estimations. The theoretical contributions are: an intrinsic model of noise for transformations based on composition rather than addition; a unified formalism for the estimation of both the rigid transformation and its covariance matrix for points or frames correspondences, and a statistical validation method to verify the error estimation, which applies even when no “ground truth” is available. We analyze and demonstrate on synthetic data that our scheme is well behaved. The practical contribution of the paper is the validation of our transformation estimation method in the case of 3-D medical images, which shows that an accuracy of the registration far below the size of a voxel can be achieved, and in the case of protein substructure matching, where frame features drastically improve both selectivity and complexity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Book
    Book
    Amsterdam :Elsevier / Academic Press,
    Title: Riemannian geometric statistics in medical image analysis : (to appear)
    Author: Pennec, Xavier
    Publisher: Amsterdam :Elsevier / Academic Press,
    Year of publication: 2019
    Pages: 550 S.
    ISBN: 978-0-12-814725-2
    Type of Medium: Book
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-19
    Description: Statistical shape modeling is a powerful tool for visualizing and quantifying geometric and functional patterns of the heart. After myocardial infarction (MI), the left ventricle typically remodels in response to physiological challenges. Several methods have been proposed in the literature to describe statistical shape changes. Which method best characterizes left ventricular remodeling after MI is an open research question. A better descriptor of remodeling is expected to provide a more accurate evaluation of disease status in MI patients. We therefore designed a challenge to test shape characterization in MI given a set of three-dimensional left ventricular surface points. The training set comprised 100 MI patients, and 100 asymptomatic volunteers (AV). The challenge was initiated in 2015 at the Statistical Atlases and Computational Models of the Heart workshop, in conjunction with the MICCAI conference. The training set with labels was provided to participants, who were asked to submit the likelihood of MI from a different (validation) set of 200 cases (100 AV and 100 MI). Sensitivity, specificity, accuracy and area under the receiver operating characteristic curve were used as the outcome measures. The goals of this challenge were to (1) establish a common dataset for evaluating statistical shape modeling algorithms in MI, and (2) test whether statistical shape modeling provides additional information characterizing MI patients over standard clinical measures. Eleven groups with a wide variety of classification and feature extraction approaches participated in this challenge. All methods achieved excellent classification results with accuracy ranges from 0.83 to 0.98. The areas under the receiver operating characteristic curves were all above 0.90. Four methods showed significantly higher performance than standard clinical measures. The dataset and software for evaluation are available from the Cardiac Atlas Project website1.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...