Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 4328-4337 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Advances in optical parametric devices, in particular those requiring high conversion efficiency, rely on pump laser and gain medium properties. We describe and theoretically model the source of dephasing due to angular deviation from ideal phase matching in optical parametric amplification. Real laser beams have angular content, which is described by their spatial frequency spectrum. Such beams cannot be treated as single plane waves in nonlinear interactions. Our mathematical model is based on a plane wave decomposition of Gaussian and top-hat beams into their components in spatial frequencies. Several popular nonlinear materials (beta-barium borate, lithium borate, and potassium dihydrogen phosphate) are examined for phase matching angles and dephasing is rigorously calculated. The impact of the beam angular content on small signal gain and on conversion efficiency in the strongly depleted regime is evaluated numerically. In addition, a criterion is formulated for beam quality tolerance in optical parametric amplifiers, for critical and noncritical phase matching. The impact of initial conditions in optical parametric amplification is considered. Our calculations are intended primarily for devices pumped with long (nanosecond) pulses. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In recent Petawatt laser experiments at Lawrence Livermore National Laboratory, several hundred joules of 1 μm laser light in 0.5–5.0-ps pulses with intensities up to 3×1020 W cm−2 were incident on solid targets and produced a strongly relativistic interaction. The energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques. About 40%–50% of the laser energy is converted to broadly beamed hot electrons. Their beam centroid direction varies from shot to shot, but the resulting bremsstrahlung beam has a consistent width. Extraordinarily luminous ion beams (primarily protons) almost precisely normal to the rear of various targets are seen—up to 3×1013 protons with kTion∼several MeV representing ∼6% of the laser energy. Ion energies up to at least 55 MeV are observed. The ions appear to originate from the rear target surfaces. The edge of the ion beam is very sharp, and collimation increases with ion energy. At the highest energies, a narrow feature appears in the ion spectra, and the apparent size of the emitting spot is smaller than the full back surface area. Any ion emission from the front of the targets is much less than from the rear and is not sharply beamed. The hot electrons generate a Debye sheath with electrostatic fields of order MV per micron, which apparently accelerate the ions. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...